Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
PNAS Nexus ; 3(6): pgae227, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38911595

RESUMO

In this study, we delve into the intricacies of elastoviscoplastic (EVP) fluids, particularly focusing on how polymer additives influence their extensional behavior. Our findings reveal that polymer additives significantly alter the extensional properties of the EVP fluids, such as relaxation time and extensional stresses while having negligible impact on the shear rheology. Interestingly, the modified fluids exhibit a transition from yield stress-like behavior to viscoelastic-like behavior under high extensional rates, ultimately leading to destabilization under extreme deformation. This research enhances the fundamental understanding of EVP fluids and highlights potential advancements in applications, especially in precision-demanding fields like 3D printing.

2.
Nat Commun ; 15(1): 4070, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802336

RESUMO

Elastic turbulence is the chaotic fluid motion resulting from elastic instabilities due to the addition of polymers in small concentrations at very small Reynolds ( Re ) numbers. Our direct numerical simulations show that elastic turbulence, though a low Re phenomenon, has more in common with classical, Newtonian turbulence than previously thought. In particular, we find power-law spectra for kinetic energy E(k) ~ k-4 and polymeric energy Ep(k) ~ k-3/2, independent of the Deborah (De) number. This is further supported by calculation of scale-by-scale energy budget which shows a balance between the viscous term and the polymeric term in the momentum equation. In real space, as expected, the velocity field is smooth, i.e., the velocity difference across a length scale r, δu ~ r but, crucially, with a non-trivial sub-leading contribution r3/2 which we extract by using the second difference of velocity. The structure functions of second difference of velocity up to order 6 show clear evidence of intermittency/multifractality. We provide additional evidence in support of this intermittent nature by calculating moments of rate of dissipation of kinetic energy averaged over a ball of radius r, εr, from which we compute the multifractal spectrum.

3.
Sci Rep ; 13(1): 5184, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36997565

RESUMO

Flexible filamentous beds interacting with a turbulent flow represent a fundamental setting for many environmental phenomena, e.g., aquatic canopies in marine current. Exploiting direct numerical simulations at high Reynolds number where the canopy stems are modelled individually, we provide evidence on the essential features of the honami/monami collective motion experienced by hairy surfaces over a range of different flexibilities, i.e., Cauchy number. Our findings clearly confirm that the collective motion is essentially driven by fluid flow turbulence, with the canopy having in this respect a fully-passive behavior. Instead, some features pertaining to the structural response turn out to manifest in the motion of the individual canopy elements when focusing, in particular, on the spanwise oscillation and/or on sufficiently small Cauchy numbers.

4.
Sci Adv ; 9(11): eadd3831, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36921045

RESUMO

We use direct numerical simulations to study homogeneous and isotropic turbulent flows of dilute polymer solutions at high Reynolds and Deborah numbers. We find that for small wave numbers k, the kinetic energy spectrum shows Kolmogorov-like behavior that crosses over at a larger k to a novel, elastic scaling regime, E(k) ∼ k-ξ, with ξ ≈ 2.3. We study the contribution of the polymers to the flux of kinetic energy through scales and find that it can be decomposed into two parts: one increase in effective viscous dissipation and a purely elastic contribution that dominates over the nonlinear flux in the range of k over which the elastic scaling is observed. The multiscale balance between the two fluxes determines the crossover wave number that depends nonmonotically on the Deborah number. Consistently, structure functions also show two scaling ranges, with intermittency present in both of them in equal measure.

5.
Sci Rep ; 13(1): 1299, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36690827

RESUMO

Viscous dissipation causes significant energy losses in fluid flows; in ducts, laminar flows provide the minimum resistance to the motion, whereas turbulence substantially increases the friction at the wall and the consequent energy requirements for pumping. Great effort is currently being devoted to find new strategies to reduce the energy losses induced by turbulence. Here we propose a simple and novel drag-reduction technique which achieves substantial energy savings in internal flows. Our approach consists in driving the flow with a temporally intermittent pumping, unlike the common practice of a constant pumping. We alternate "pump on" phases where the flow accelerates, and "pump off" phases where the flow decays freely. The flow cyclically enters a quasi-laminar state during the acceleration, and transitions to a more classic turbulent state during the deceleration. Our numerical results demonstrate that important energy savings can be achieved by simply modulating the power injection into the system over time. The physical understanding of this process can help the industry in reducing the waste of energy, creating economical benefits and preserving the environment by reducing harmful emissions.


Assuntos
Movimento (Física) , Viscosidade
6.
Meccanica ; 57(3): 567-575, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35039689

RESUMO

The spreading of the virus-containing droplets exhaled during respiratory events, e.g., cough, is an issue of paramount importance for the prevention of many infections such as COVID-19. According to the scientific literature, remarkable differences can be ascribed to several parameters that govern such complex and multiphysical problem. Among these, a particular influence appears associated with the different airflows typical of male and female subjects. Focusing on a typical cough event, we investigate this aspect by means of highly-resolved direct numerical simulations of the turbulent airflow in combination with a comprehensive Lagrangian particle tracking model for the droplet motion and evaporation. We observe and quantify major differences between the case of male and female subjects, both in terms of the droplet final reach and evaporation time. Our results can be associated with the different characteristics in the released airflow and thus confirm the influence of the subject gender (or other physical properties providing different exhalation profiles) on both short-range and long-range airborne transmission.

7.
Soft Matter ; 17(35): 8047-8058, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34525164

RESUMO

Shear thickening in stable dense colloidal suspensions is a reversible phenomenon and no hysteresis is observed in the flow curve measurements. However, a reduction in the stability of colloids promotes particle aggregation and introduces a time dependent rheological response. In this work, by using a model colloidal system of hard spherical silica particles (average diameter of 415 nm) with varying particle volume fractions 0.2 ≤ ϕ ≤ 0.56, we study the effect of particle stability on the hysteresis of the shear thickening behavior of these suspensions. The particle stability is manipulated by adding a simple monovalent salt (sodium chloride) in the silica suspension with varying concentrations α ∈ [0,0.5] M. For repulsive and weakly attractive suspensions, the flow behavior is history independent and the shear thickening behavior does not exhibit hysteresis. However, significant hysteresis is observed in rheological measurements for strongly attractive suspensions, with shear history playing a critical role due to the dynamic nature of particle clusters, resulting in time dependent hysteresis behavior. By performing numerical simulations, we find that this hysteresis behavior arises due to the competition among shear, electrostatic repulsive, van der Waals attractive, and frictional contact forces. The critical shear stress (i.e., the onset of shear thickening) decreases with increasing salt concentrations, which can be captured by a scaling relationship based on the force balance between particle-particle contact force and electrostatic repulsive force. Our combined experimental and simulation results imply the formation of particle contacts in our sheared suspensions.

8.
Phys Rev Lett ; 125(11): 114501, 2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32975964

RESUMO

The backreaction of dispersed rigid fibers to turbulence is analyzed by means of a state-of-the-art fully coupled immersed boundary method. The following universal scenario is identified: turbulence at large scales looses a consistent part of its kinetic energy (via a Darcy friction term), which partially reappears at small scales where a new range of energy-containing scales does emerge. Large-scale mixing is thus depleted in favor of a new mixing mechanism arising at the smallest scales. Anchored fibers cause the same backreaction to turbulence as moving fibers of large inertia. Our results thus provide a link between two apparently separated realms: the one of porous media and the one of suspension dynamics.

9.
Flow Turbul Combust ; 100(4): 1111-1143, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30069151

RESUMO

Self-activated feathers are used by almost all birds to adapt their wing characteristics to delay stall or to moderate its adverse effects (e.g., during landing or sudden increase in angle of attack due to gusts). Some of the feathers are believed to pop up as a consequence of flow separation and to interact with the flow and produce beneficial modifications of the unsteady vorticity field. The use of self adaptive flaplets in aircrafts, inspired by birds feathers, requires the understanding of the physical mechanisms leading to the mentioned aerodynamic benefits and the determination of the characteristics of optimal flaps including their size, positioning and ideal fabrication material. In this framework, this numerical study is divided in two parts. Firstly, in a simplified scenario, we determine the main characteristics that render a flap mounted on an aerofoil at high angle of attack able to deliver increased lift and improved aerodynamic efficiency, by varying its length, position and its natural frequency. Later on, a detailed direct numerical simulation analysis is used to understand the origin of the aerodynamic benefits introduced by the flaplet movement induced by the interaction with the flow field. The parametric study that has been carried out, reveals that an optimal flap can deliver a mean lift increase of about 20% on a NACA0020 aerofoil at an incidence of 20 o degrees. The results obtained from the direct numerical simulation of the flow field around the aerofoil equipped with the optimal flap at a chord Reynolds number of 2 × 104 shows that the flaplet movement is mainly induced by a cyclic passage of a large recirculation bubble on the aerofoil suction side. In turns, when the flap is pushed downward, the induced plane jet displaces the trailing edge vortices further downstream, away from the wing, moderating the downforce generated by those vortices and regularising the shedding cycle that appears to be much more organised when the optimal flaplet configuration is selected.

10.
Meccanica ; 52(8): 1811-1824, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28529384

RESUMO

During the flight of birds, it is often possible to notice that some of the primaries and covert feathers on the upper side of the wing pop-up under critical flight conditions, such as the landing approach or when stalking their prey (see Fig. 1) . It is often conjectured that the feathers pop up plays an aerodynamic role by limiting the spread of flow separation . A combined experimental and numerical study was conducted to shed some light on the physical mechanism determining the feathers self actuation and their effective role in controlling the flow field in nominally stalled conditions. In particular, we have considered a NACA0020 aerofoil, equipped with a flexible flap at low chord Reynolds numbers. A parametric study has been conducted on the effects of the length, natural frequency, and position of the flap. A configuration with a single flap hinged on the suction side at 70 % of the chord size c (from the leading edge), with a length of [Formula: see text] matching the shedding frequency of vortices at stall condition has been found to be optimum in delivering maximum aerodynamic efficiency and lift gains. Flow evolution both during a ramp-up motion (incidence angle from [Formula: see text] to [Formula: see text] with a reduced frequency of [Formula: see text], [Formula: see text] being the free stream velocity magnitude), and at a static stalled condition ([Formula: see text]) were analysed with and without the flap. A significant increase of the mean lift after a ramp-up manoeuvre is observed in presence of the flap. Stall dynamics (i.e., lift overshoot and oscillations) are altered and the simulations reveal a periodic re-generation cycle composed of a leading edge vortex that lift the flap during his passage, and an ejection generated by the relaxing of the flap in its equilibrium position. The flap movement in turns avoid the interaction between leading and trailing edge vortices when lift up and push the trailing edge vortex downstream when relaxing back. This cyclic behaviour is clearly shown by the periodic variation of the lift about the average value, and also from the periodic motion of the flap. A comparison with the experiments shows a similar but somewhat higher non-dimensional frequency of the flap oscillation. By assuming that the cycle frequency scales inversely with the boundary layer thickness, one can explain the higher frequencies observed in the experiments which were run at a Reynolds number about one order of magnitude higher than in the simulations. In addition, in experiments the periodic re-generation cycle decays after 3-4 periods ultimately leading to the full stall of the aerofoil. In contrast, the 2D simulations show that the cycle can become self-sustained without any decay when the flap parameters are accurately tuned.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...