Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Immunol ; 16(12): 1215-27, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26479788

RESUMO

Enhancing the response to interferon could offer an immunological advantage to the host. In support of this concept, we used a modified form of the transcription factor STAT1 to achieve hyper-responsiveness to interferon without toxicity and markedly improve antiviral function in transgenic mice and transduced human cells. We found that the improvement depended on expression of a PARP9-DTX3L complex with distinct domains for interaction with STAT1 and for activity as an E3 ubiquitin ligase that acted on host histone H2BJ to promote interferon-stimulated gene expression and on viral 3C proteases to degrade these proteases via the immunoproteasome. Thus, PARP9-DTX3L acted on host and pathogen to achieve a double layer of immunity within a safe reserve in the interferon signaling pathway.


Assuntos
Cisteína Endopeptidases/metabolismo , Histonas/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Virais/metabolismo , Proteases Virais 3C , Animais , Linhagem Celular , Núcleo Celular/metabolismo , Vírus da Encefalomiocardite/fisiologia , Células HEK293 , Interações Hospedeiro-Patógeno , Humanos , Immunoblotting , Interferon beta/farmacologia , Interferon gama/farmacologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Confocal , Mutação , Poli(ADP-Ribose) Polimerases/genética , Ligação Proteica , Interferência de RNA , DNA Polimerase Dirigida por RNA , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo , Transdução de Sinais , Transcriptoma/efeitos dos fármacos , Ubiquitina-Proteína Ligases/genética
2.
J Clin Invest ; 122(12): 4555-68, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23187130

RESUMO

Increased mucus production is a common cause of morbidity and mortality in inflammatory airway diseases, including asthma, chronic obstructive pulmonary disease (COPD), and cystic fibrosis. However, the precise molecular mechanisms for pathogenic mucus production are largely undetermined. Accordingly, there are no specific and effective anti-mucus therapeutics. Here, we define a signaling pathway from chloride channel calcium-activated 1 (CLCA1) to MAPK13 that is responsible for IL-13-driven mucus production in human airway epithelial cells. The same pathway was also highly activated in the lungs of humans with excess mucus production due to COPD. We further validated the pathway by using structure-based drug design to develop a series of novel MAPK13 inhibitors with nanomolar potency that effectively reduced mucus production in human airway epithelial cells. These results uncover and validate a new pathway for regulating mucus production as well as a corresponding therapeutic approach to mucus overproduction in inflammatory airway diseases.


Assuntos
Células Epiteliais/metabolismo , Interleucina-13/fisiologia , Proteína Quinase 13 Ativada por Mitógeno/antagonistas & inibidores , Muco/metabolismo , Sistema Respiratório/metabolismo , Sítios de Ligação , Células Cultivadas , Canais de Cloreto/genética , Canais de Cloreto/metabolismo , Canais de Cloreto/fisiologia , Cristalografia por Raios X , Desenho de Fármacos , Células Epiteliais/efeitos dos fármacos , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Ligação de Hidrogênio , Cinética , Sistema de Sinalização das MAP Quinases , Proteína Quinase 13 Ativada por Mitógeno/química , Proteína Quinase 13 Ativada por Mitógeno/genética , Proteína Quinase 13 Ativada por Mitógeno/metabolismo , Modelos Moleculares , Mucinas/genética , Mucinas/metabolismo , Naftalenos/química , Naftalenos/farmacologia , Ligação Proteica , Doença Pulmonar Obstrutiva Crônica/metabolismo , Pirazóis/química , Pirazóis/farmacologia , Interferência de RNA , Sistema Respiratório/patologia , Via Secretória/efeitos dos fármacos
3.
J Biol Chem ; 287(50): 42138-49, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23112050

RESUMO

The chloride channel calcium-activated (CLCA) family are secreted proteins that regulate both chloride transport and mucin expression, thus controlling the production of mucus in respiratory and other systems. Accordingly, human CLCA1 is a critical mediator of hypersecretory lung diseases, such as asthma, chronic obstructive pulmonary disease, and cystic fibrosis, that manifest mucus obstruction. Despite relevance to homeostasis and disease, the mechanism of CLCA1 function remains largely undefined. We address this void by showing that CLCA proteins contain a consensus proteolytic cleavage site recognized by a novel zincin metalloprotease domain located within the N terminus of CLCA itself. CLCA1 mutations that inhibit self-cleavage prevent activation of calcium-activated chloride channel (CaCC)-mediated chloride transport. CaCC activation requires cleavage to unmask the N-terminal fragment of CLCA1, which can independently gate CaCCs. Gating of CaCCs mediated by CLCA1 does not appear to involve proteolytic cleavage of the channel because a mutant N-terminal fragment deficient in proteolytic activity is able to induce currents comparable with that of the native fragment. These data provide both a mechanistic basis for CLCA1 self-cleavage and a novel mechanism for regulation of chloride channel activity specific to the mucosal interface.


Assuntos
Canais de Cloreto/metabolismo , Ativação do Canal Iônico/fisiologia , Metaloproteases/metabolismo , Proteólise , Linhagem Celular , Canais de Cloreto/genética , Humanos , Transporte de Íons/fisiologia , Metaloproteases/genética , Estrutura Terciária de Proteína
4.
Am J Respir Cell Mol Biol ; 36(5): 515-9, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17255554

RESUMO

Ciliated airway epithelial cells are critical for mucosal barrier function, including host defense against pathogens. This cell population is often the primary target and thereby the first line of defense against many common respiratory viruses. It is also the precursor for mucous cells and thereby promotes mucociliary clearance of infectious and other noxious agents. Cells with motile cilia in other organs (e.g., brain and reproductive organs) may also have roles in development and reproduction. However, definitive proof of ciliated cell function is hampered by the lack of strategies to specifically target this cell population for loss of function in vivo. To this end, cell type-specific gene promoters have been combined with the Cre/LoxP system to disrupt genes in airway and alveolar epithelial cell populations expressing surfactant protein C (SP-C) or Clara cell secretory protein (CCSP). By contrast, an analogous system to disrupt gene function in ciliated airway epithelial cells was still needed. Here we report the generation and analysis of mouse lines with a FOXJ1 promoter driving the Cre recombinase and show that this system mediates genomic recombination specifically in ciliated cells. The pattern of recombination recapitulates endogenous FOXJ1 promoter function, being restricted to ciliated cells present in pulmonary airways as well as choroid plexus, ependyma, oviduct, and testis. This transgenic mouse system thereby offers a new strategy for specific knockouts of genes in ciliated cells. It should prove extremely useful for defining ciliated cell function in airway mucosal immunity as well as development and reproduction.


Assuntos
Cílios/metabolismo , Células Epiteliais/metabolismo , Fatores de Transcrição Forkhead/genética , Inativação Gênica , Integrases/genética , Transgenes/genética , Animais , Perfilação da Expressão Gênica , Humanos , Pulmão/citologia , Pulmão/metabolismo , Camundongos , Camundongos Transgênicos , Recombinação Genética/genética
5.
J Clin Invest ; 116(2): 309-21, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16453019

RESUMO

Epithelial hyperplasia and metaplasia are common features of inflammatory and neoplastic disease, but the basis for the altered epithelial phenotype is often uncertain. Here we show that long-term ciliated cell hyperplasia coincides with mucous (goblet) cell metaplasia after respiratory viral clearance in mouse airways. This chronic switch in epithelial behavior exhibits genetic susceptibility and depends on persistent activation of EGFR signaling to PI3K that prevents apoptosis of ciliated cells and on IL-13 signaling that promotes transdifferentiation of ciliated to goblet cells. Thus, EGFR blockade (using an irreversible EGFR kinase inhibitor designated EKB-569) prevents virus-induced increases in ciliated and goblet cells whereas IL-13 blockade (using s-IL-13Ralpha2-Fc) exacerbates ciliated cell hyperplasia but still inhibits goblet cell metaplasia. The distinct effects of EGFR and IL-13 inhibitors after viral reprogramming suggest that these combined therapeutic strategies may also correct epithelial architecture in the setting of airway inflammatory disorders characterized by a similar pattern of chronic EGFR activation, IL-13 expression, and ciliated-to-goblet cell metaplasia.


Assuntos
Apoptose/fisiologia , Diferenciação Celular/fisiologia , Células Epiteliais/metabolismo , Receptores ErbB/metabolismo , Interleucina-13/metabolismo , Mucosa Respiratória/citologia , Transdução de Sinais/fisiologia , Animais , Células Cultivadas , Células Epiteliais/citologia , Receptores ErbB/genética , Humanos , Hiperplasia , Metaplasia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Mucina-5AC , Mucinas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Mucosa Respiratória/patologia , Vírus/metabolismo
6.
J Biol Chem ; 280(40): 34306-15, 2005 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-16107341

RESUMO

A normal level of interferon (IFN) responsiveness via the Stat1 transcription factor is critical to the host, since decreased Stat1 signaling causes immune compromise and increased signaling is associated with inflammatory and neoplastic disease. Here we report how this balance may be influenced by novel alterations in the efficiency of Stat1 signaling. To enable disulfide-dependent and spontaneous formation of active Stat1 homodimer (as was done previously for Stat3), we engineered Stat1-CC with double-cysteine substitutions in the Src homology 2 (SH2)-homodimerization domain (at Ala-656 and Asn-658). In this case, however, mutant and wild-type Stat1 exhibited no difference inspontaneousdimerization. Moreover, Stat1-CC still required ligand-dependent Tyr-701 phosphorylation for function and exhibited hyperresponsiveness to IFN-beta (that depends on Stat1/Stat2 heterodimerization) as well as IFN-gamma (that depends on Stat1/Stat1 homodimerization). Hyperresponsivenss of Stat1-CC was accompanied by increased capacities for Tyr-701 phosphorylation and DNA binding, but these features were also found in a similarly substituted serine mutant (Stat1-SS) that showed no hyperresponsiveness to IFN-gamma. This finding raised the possibility that SH2 domain mutations also influence downstream transcriptional efficiency. Indeed, each of these mutations also enhanced recruitment of the normally rate-limiting p300/CREB-binding Protein (CBP) coactivator to the transcriptional complex in proportion to the level of IFN-driven transactivation and gene expression. Additional modifications indicated that the mutant residues in the SH2 domain appeared to cooperate with Ser-727 in the C-terminal domain to regulate p300/CBP interaction with Stat1. The profile of IFN responsiveness translated into the same progressive increase in the level of viral clearance from Stat1- to Stat1-SS- to Stat1-CC-expressing cells. Thus, SH2 domain determinants may be modified to direct better Stat1 phosphorylation, DNA binding, and coactivator recruitment to fully improve IFN efficacy.


Assuntos
Antineoplásicos/farmacologia , Interferon beta/farmacologia , Interferon gama/farmacologia , Fator de Transcrição STAT1/fisiologia , Proteína de Ligação a CREB/fisiologia , Cisteína , DNA/metabolismo , Proteína p300 Associada a E1A/fisiologia , Inflamação , Mutagênese Sítio-Dirigida , Fosforilação , Retroviridae , Fator de Transcrição STAT1/química , Fator de Transcrição STAT1/genética , Transdução de Sinais , Transfecção , Domínios de Homologia de src
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...