Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Viruses ; 10(6)2018 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-29857552

RESUMO

Burkholderia cenocepacia, is a Gram-negative opportunistic pathogen that belongs to Burkholderia cepacia complex (BCC) group. BCC representatives carry various pathogenicity factors and can infect humans and plants. Phages as bacterial viruses play a significant role in biodiversity and ecological balance in the environment. Specifically, horizontal gene transfer (HGT) and lysogenic conversion (temperate phages) influence microbial diversification and fitness. In this study, we describe the prevalence and gene content of prophages in 16 fully sequenced B. cenocepacia genomes stored in NCBI database. The analysis was conducted in silico by manual and automatic approaches. Sixty-three potential prophage regions were found and classified as intact, incomplete, questionable, and artifacts. The regions were investigated for the presence of known virulence factors, resulting in the location of sixteen potential pathogenicity mechanisms, including toxin⁻antitoxin systems (TA), Major Facilitator Superfamily (MFS) transporters and responsible for drug resistance. Investigation of the region's closest neighborhood highlighted three groups of genes with the highest occurrence-tRNA-Arg, dehydrogenase family proteins, and ABC transporter substrate-binding proteins. Searches for antiphage systems such as BacteRiophage EXclusion (BREX) and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) in the analyzed strains suggested 10 sequence sets of CRISPR elements. Our results suggest that intact B. cenocepacia prophages may provide an evolutionary advantage to the bacterium, while domesticated prophages may help to maintain important genes.


Assuntos
Burkholderia cenocepacia/genética , Genoma Bacteriano , Genoma Viral , Prófagos/genética , Burkholderia cenocepacia/virologia , Complexo Burkholderia cepacia/genética , Complexo Burkholderia cepacia/virologia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Humanos , Lisogenia , Prevalência , Análise de Sequência de DNA , Sistemas Toxina-Antitoxina/genética , Fatores de Virulência/genética
2.
Sci Rep ; 8(1): 4955, 2018 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-29563531

RESUMO

Moraxella catarrhalis is a common human respiratory tract pathogen. Its virulence factors associated with whole bacteria or outer membrane vesicles (OMVs) aid infection, colonization and may induce specific antibodies. To investigate pathogen-host interactions, we applied integrated bioinformatic and immunoproteomic (2D-electrophoresis, immunoblotting, LC-MS/MS) approaches. We showed that OMV proteins engaged exclusively in complement evasion and colonization strategies, but not those involved in iron transport and metabolism, are major targets for cross-reacting antibodies produced against phylogenetically divergent M. catarrhalis strains. The analysis of 31 complete genomes of M. catarrhalis and other Moraxella revealed that OMV protein-coding genes belong to 64 orthologous groups, five of which are restricted to M. catarrhalis. This species showed a two-fold increase in the number of OMV protein-coding genes relative to its ancestors and animal-pathogenic Moraxella. The appearance of specific OMV factors and the increase in OMV-associated virulence proteins during M. catarrhalis evolution is an interesting example of pathogen adaptation to optimize colonization. This precisely targeted cross-reactive immunity against M. catarrhalis may be an important strategy of host defences to counteract this phenomenon. We demonstrate that cross-reactivity is closely associated with the anti-virulent antibody repertoire which we have linked with adaptation of this pathogen to the host.


Assuntos
Anticorpos Antibacterianos/imunologia , Vesículas Extracelulares/imunologia , Moraxella catarrhalis/imunologia , Infecções por Moraxellaceae/imunologia , Fatores de Virulência/imunologia , Animais , Anticorpos Antibacterianos/sangue , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/imunologia , Proteínas da Membrana Bacteriana Externa/metabolismo , Parede Celular/imunologia , Parede Celular/metabolismo , Biologia Computacional , Reações Cruzadas/imunologia , Modelos Animais de Doenças , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Genoma Bacteriano/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Moraxella catarrhalis/genética , Moraxella catarrhalis/metabolismo , Moraxella catarrhalis/patogenicidade , Infecções por Moraxellaceae/sangue , Infecções por Moraxellaceae/microbiologia , Proteômica , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
3.
Curr Med Chem ; 24(36): 3987-4001, 2017 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-28412903

RESUMO

Bacteriophages (phages or bacterial viruses) are the most abundant biological entities in our planet; their influence reaches far beyond the microorganisms they parasitize. Phages are present in every environment and shape up every bacterial population in both active and passive ways. They participate in the circulation of organic matter and drive the evolution of microorganisms by horizontal gene transfer at unprecedented scales. The mass flow of genetic information in the microbial world influences the biosphere and poses challenges for science and medicine. The genetic flow, however, depends on the fate of the viral DNA injected into the bacterial cell. The archetypal notion of phages only engaging in predatorprey relationships is slowly fading. Because of their varied development cycles, environmental conditions, and the diversity of microorganisms they parasitize, phages form a dense and highly complex web of dependencies, which has important consequences for life on Earth. The sophisticated phage-bacteria interplay includes both aggressive action (bacterial lysis) and "diplomatic negotiations" (prophage domestication). Here, we review the most important mechanisms of interactions between phages and bacteria and their evolutionary consequences influencing their biodiversity.


Assuntos
Bactérias/virologia , Bacteriófagos/fisiologia , Biodiversidade , Bactérias/genética , Bacteriófagos/genética , Sistemas CRISPR-Cas/genética , Resistência Microbiana a Medicamentos , Evolução Molecular , Transferência Genética Horizontal , Interações Hospedeiro-Patógeno
4.
Appl Microbiol Biotechnol ; 101(2): 673-684, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27766357

RESUMO

Lytic bacteriophages and phage-encoded endolysins (peptidoglycan hydrolases) provide a source for the development of novel antimicrobial strategies. In the present study, we focus on the closely related (96 % DNA sequence identity) environmental myoviruses vB_KpnM_KP15 (KP15) and vB_KpnM_KP27 (KP27) infecting multidrug-resistant Klebsiella pneumoniae and Klebsiella oxytoca strains. Their genome organisation and evolutionary relationship are compared to Enterobacter phage phiEap-3 and Klebsiella phages Matisse and Miro. Due to the shared and distinct evolutionary history of these phages, we propose to create a new phage genus "Kp15virus" within the Tevenvirinae subfamily. In silico genome analysis reveals two unique putative homing endonucleases of KP27 phage, probably involved in unrevealed mechanism of DNA modification and resistance to restriction digestion, resulting in a broader host spectrum. Additionally, we identified in KP15 and KP27 a complete set of lysis genes, containing holin, antiholin, spanin and endolysin. By turbidimetric assays on permeabilized Gram-negative strains, we verified the ability of the KP27 endolysin to destroy the bacterial peptidoglycan. We confirmed high stability, absence of toxicity on a human epithelial cell line and the enzymatic specificity of endolysin, which was found to possess endopeptidase activity, cleaving the peptide stem between L-alanine and D-glutamic acid.


Assuntos
Bacteriófagos/enzimologia , Bacteriófagos/isolamento & purificação , DNA Viral/química , Endopeptidases/metabolismo , Klebsiella oxytoca/virologia , Klebsiella pneumoniae/virologia , Bacteriófagos/classificação , Bacteriófagos/genética , DNA Viral/genética , Ordem dos Genes , Myoviridae/classificação , Myoviridae/enzimologia , Myoviridae/genética , Myoviridae/isolamento & purificação , Filogenia , Homologia de Sequência
5.
Appl Microbiol Biotechnol ; 101(3): 1203-1216, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27770178

RESUMO

Burkholderia phage AP3 (vB_BceM_AP3) is a temperate virus of the Myoviridae and the Peduovirinae subfamily (P2likevirus genus). This phage specifically infects multidrug-resistant clinical Burkholderia cenocepacia lineage IIIA strains commonly isolated from cystic fibrosis patients. AP3 exhibits high pairwise nucleotide identity (61.7 %) to Burkholderia phage KS5, specific to the same B. cenocepacia host, and has 46.7-49.5 % identity to phages infecting other species of Burkholderia. The lysis cassette of these related phages has a similar organization (putative antiholin, putative holin, endolysin, and spanins) and shows 29-98 % homology between specific lysis genes, in contrast to Enterobacteria phage P2, the hallmark phage of this genus. The AP3 and KS5 lysis genes have conserved locations and high amino acid sequence similarity. The AP3 bacteriophage particles remain infective up to 5 h at pH 4-10 and are stable at 60 °C for 30 min, but are sensitive to chloroform, with no remaining infective particles after 24 h of treatment. AP3 lysogeny can occur by stable genomic integration and by pseudo-lysogeny. The lysogenic bacterial mutants did not exhibit any significant changes in virulence compared to wild-type host strain when tested in the Galleria mellonella moth wax model. Moreover, AP3 treatment of larvae infected with B. cenocepacia revealed a significant increase (P < 0.0001) in larvae survival in comparison to AP3-untreated infected larvae. AP3 showed robust lytic activity, as evidenced by its broad host range, the absence of increased virulence in lysogenic isolates, the lack of bacterial gene disruption conditioned by bacterial tRNA downstream integration site, and the absence of detected toxin sequences. These data suggest that the AP3 phage is a promising potent agent against bacteria belonging to the most common B. cenocepacia IIIA lineage strains.


Assuntos
Anti-Infecciosos/isolamento & purificação , Bacteriófagos/genética , Bacteriófagos/isolamento & purificação , Bacteriófagos/fisiologia , Complexo Burkholderia cepacia/virologia , Burkholderia/virologia , Genoma Viral , Especificidade de Hospedeiro , Animais , Infecções por Burkholderia/microbiologia , Burkholderia cenocepacia/virologia , Fibrose Cística/microbiologia , Humanos , Lisogenia , Mariposas/virologia , Análise de Sequência de DNA , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...