Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 629(8011): 426-434, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38658764

RESUMO

Expansion of antigen-experienced CD8+ T cells is critical for the success of tumour-infiltrating lymphocyte (TIL)-adoptive cell therapy (ACT) in patients with cancer1. Interleukin-2 (IL-2) acts as a key regulator of CD8+ cytotoxic T lymphocyte functions by promoting expansion and cytotoxic capability2,3. Therefore, it is essential to comprehend mechanistic barriers to IL-2 sensing in the tumour microenvironment to implement strategies to reinvigorate IL-2 responsiveness and T cell antitumour responses. Here we report that prostaglandin E2 (PGE2), a known negative regulator of immune response in the tumour microenvironment4,5, is present at high concentrations in tumour tissue from patients and leads to impaired IL-2 sensing in human CD8+ TILs via the PGE2 receptors EP2 and EP4. Mechanistically, PGE2 inhibits IL-2 sensing in TILs by downregulating the IL-2Rγc chain, resulting in defective assembly of IL-2Rß-IL2Rγc membrane dimers. This results in impaired IL-2-mTOR adaptation and PGC1α transcriptional repression, causing oxidative stress and ferroptotic cell death in tumour-reactive TILs. Inhibition of PGE2 signalling to EP2 and EP4 during TIL expansion for ACT resulted in increased IL-2 sensing, leading to enhanced proliferation of tumour-reactive TILs and enhanced tumour control once the cells were transferred in vivo. Our study reveals fundamental features that underlie impairment of human TILs mediated by PGE2 in the tumour microenvironment. These findings have therapeutic implications for cancer immunotherapy and cell therapy, and enable the development of targeted strategies to enhance IL-2 sensing and amplify the IL-2 response in TILs, thereby promoting the expansion of effector T cells with enhanced therapeutic potential.


Assuntos
Linfócitos T CD8-Positivos , Proliferação de Células , Dinoprostona , Interleucina-2 , Linfócitos do Interstício Tumoral , Mitocôndrias , Transdução de Sinais , Animais , Humanos , Camundongos , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Dinoprostona/metabolismo , Regulação para Baixo , Ferroptose , Subunidade gama Comum de Receptores de Interleucina/biossíntese , Subunidade gama Comum de Receptores de Interleucina/deficiência , Subunidade gama Comum de Receptores de Interleucina/metabolismo , Interleucina-2/antagonistas & inibidores , Interleucina-2/imunologia , Interleucina-2/metabolismo , Subunidade beta de Receptor de Interleucina-2/metabolismo , Linfócitos do Interstício Tumoral/citologia , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Mitocôndrias/metabolismo , Estresse Oxidativo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Receptores de Prostaglandina E Subtipo EP2/metabolismo , Receptores de Prostaglandina E Subtipo EP2/antagonistas & inibidores , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Receptores de Prostaglandina E Subtipo EP4/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , Microambiente Tumoral/imunologia
2.
Nat Immunol ; 24(5): 869-883, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37081150

RESUMO

To date, no immunotherapy approaches have managed to fully overcome T-cell exhaustion, which remains a mandatory fate for chronically activated effector cells and a major therapeutic challenge. Understanding how to reprogram CD8+ tumor-infiltrating lymphocytes away from exhausted effector states remains an elusive goal. Our work provides evidence that orthogonal gene engineering of T cells to secrete an interleukin (IL)-2 variant binding the IL-2Rßγ receptor and the alarmin IL-33 reprogrammed adoptively transferred T cells to acquire a novel, synthetic effector state, which deviated from canonical exhaustion and displayed superior effector functions. These cells successfully overcame homeostatic barriers in the host and led-in the absence of lymphodepletion or exogenous cytokine support-to high levels of engraftment and tumor regression. Our work unlocks a new opportunity of rationally engineering synthetic CD8+ T-cell states endowed with the ability to avoid exhaustion and control advanced solid tumors.


Assuntos
Linfócitos T CD8-Positivos , Imunoterapia Adotiva , Interleucina-2 , Neoplasias Experimentais , Linfócitos T CD8-Positivos/imunologia , Exaustão das Células T , Linfócitos do Interstício Tumoral/imunologia , Interleucina-2/farmacologia , Interleucina-33 , Engenharia de Proteínas , Feminino , Animais , Camundongos , Camundongos Endogâmicos C57BL , Linhagem Celular Tumoral , Neoplasias Experimentais/terapia , Receptor de Morte Celular Programada 1/metabolismo
3.
Sci Adv ; 7(49): eabj9247, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34860543

RESUMO

The transcription factor FOXN1 is a master regulator of thymic epithelial cell (TEC) development and function. Here, we demonstrate that FOXN1 expression is differentially regulated during organogenesis and participates in multimolecular nuclear condensates essential for the factor's transcriptional activity. FOXN1's C-terminal sequence regulates the diffusion velocity within these aggregates and modulates the binding to proximal gene regulatory regions. These dynamics are altered in a patient with a mutant FOXN1 that is modified in its C-terminal sequence. This mutant is transcriptionally inactive and acts as a dominant negative factor displacing wild-type FOXN1 from condensates and causing athymia and severe lymphopenia in heterozygotes. Expression of the mutated mouse ortholog selectively impairs mouse TEC differentiation, revealing a gene dose dependency for individual TEC subtypes. We have therefore identified the cause for a primary immunodeficiency disease and determined the mechanism by which this FOXN1 gain-of-function mutant mediates its dominant negative effect.

4.
Commun Biol ; 4(1): 681, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-34083746

RESUMO

T cells rely for their development and function on the correct folding and turnover of proteins generated in response to a broad range of molecular cues. In the absence of the eukaryotic type II chaperonin complex, CCT, T cell activation induced changes in the proteome are compromised including the formation of nuclear actin filaments and the formation of a normal cell stress response. Consequently, thymocyte maturation and selection, and T cell homeostatic maintenance and receptor-mediated activation are severely impaired. In the absence of CCT-controlled protein folding, Th2 polarization diverges from normal differentiation with paradoxical continued IFN-γ expression. As a result, CCT-deficient T cells fail to generate an efficient immune protection against helminths as they are unable to sustain a coordinated recruitment of the innate and adaptive immune systems. These findings thus demonstrate that normal T cell biology is critically dependent on CCT-controlled proteostasis and that its absence is incompatible with protective immunity.


Assuntos
Chaperonina com TCP-1/imunologia , Proteostase/imunologia , Linfócitos T/imunologia , Timócitos/imunologia , Animais , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Células Cultivadas , Chaperonina com TCP-1/genética , Chaperonina com TCP-1/metabolismo , Humanos , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteoma/imunologia , Proteoma/metabolismo , Proteostase/genética , Linfócitos T/citologia , Linfócitos T/metabolismo , Timócitos/citologia , Timócitos/metabolismo , Transcriptoma/genética , Transcriptoma/imunologia , Fator de Necrose Tumoral alfa/imunologia , Fator de Necrose Tumoral alfa/metabolismo
5.
Front Cell Dev Biol ; 9: 605301, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33763415

RESUMO

The conduits of life; the animal oviducts and human fallopian tubes are of paramount importance for reproduction in amniotes. They connect the ovary with the uterus and are essential for fertility. They provide the appropriate environment for gamete maintenance, fertilization and preimplantation embryonic development. However, serious pathologies, such as ectopic pregnancy, malignancy and severe infections, occur in the oviducts. They can have drastic effects on fertility, and some are life-threatening. Despite the crucial importance of the oviducts in life, relatively little is known about the molecular drivers underpinning the embryonic development of their precursor structures, the Müllerian ducts, and their successive differentiation and maturation. The Müllerian ducts are simple rudimentary tubes comprised of an epithelial lumen surrounded by a mesenchymal layer. They differentiate into most of the adult female reproductive tract (FRT). The earliest sign of Müllerian duct formation is the thickening of the anterior mesonephric coelomic epithelium to form a placode of two distinct progenitor cells. It is proposed that one subset of progenitor cells undergoes partial epithelial-mesenchymal transition (pEMT), differentiating into immature Müllerian luminal cells, and another subset undergoes complete EMT to become Müllerian mesenchymal cells. These cells invaginate and proliferate forming the Müllerian ducts. Subsequently, pEMT would be reversed to generate differentiated epithelial cells lining the fully formed Müllerian lumen. The anterior Müllerian epithelial cells further specialize into the oviduct epithelial subtypes. This review highlights the key established molecular and genetic determinants of the processes involved in Müllerian duct development and the differentiation of its upper segment into oviducts. Furthermore, an extensive genome-wide survey of mouse knockout lines displaying Müllerian or oviduct phenotypes was undertaken. In addition to widely established genetic determinants of Müllerian duct development, our search has identified surprising associations between loss-of-function of several genes and high-penetrance abnormalities in the Müllerian duct and/or oviducts. Remarkably, these associations have not been investigated in any detail. Finally, we discuss future directions for research on Müllerian duct development and oviducts.

6.
J Clin Immunol ; 41(4): 756-768, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33464451

RESUMO

Human nude SCID is a rare autosomal recessive inborn error of immunity (IEI) characterized by congenital athymia, alopecia, and nail dystrophy. Few cases have been reported to date. However, the recent introduction of newborn screening for IEIs and high-throughput sequencing has led to the identification of novel and atypical cases. Moreover, immunological alterations have been recently described in patients carrying heterozygous mutations. The aim of this paper is to describe the extended phenotype associated with FOXN1 homozygous, compound heterozygous, or heterozygous mutations. We collected clinical and laboratory information of a cohort of 11 homozygous, 2 compound heterozygous, and 5 heterozygous patients with recurrent severe infections. All, except one heterozygous patient, had signs of CID or SCID. Nail dystrophy and alopecia, that represent the hallmarks of the syndrome, were not always present, while almost 50% of the patients developed Omenn syndrome. One patient with hypomorphic compound heterozygous mutations had a late-onset atypical phenotype. A SCID-like phenotype was observed in 4 heterozygous patients coming from the same family. A spectrum of clinical manifestations may be associated with different mutations. The severity of the clinical phenotype likely depends on the amount of residual activity of the gene product, as previously observed for other SCID-related genes. The severity of the manifestations in this heterozygous family may suggest a mechanism of negative dominance of the specific mutation or the presence of additional mutations in noncoding regions.


Assuntos
Fatores de Transcrição Forkhead/genética , Heterozigoto , Homozigoto , Mutação , Fenótipo , Imunodeficiência Combinada Severa/diagnóstico , Imunodeficiência Combinada Severa/etiologia , Linhagem Celular , Pré-Escolar , Análise Mutacional de DNA , Gerenciamento Clínico , Feminino , Fatores de Transcrição Forkhead/química , Estudos de Associação Genética , Loci Gênicos , Predisposição Genética para Doença , Transplante de Células-Tronco Hematopoéticas , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Modelos Moleculares , Conformação Molecular , Linhagem , Imunodeficiência Combinada Severa/terapia , Relação Estrutura-Atividade , Resultado do Tratamento
7.
J Biol Chem ; 295(10): 2948-2958, 2020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-31914405

RESUMO

Forkhead box N1 (FOXN1) is a member of the forkhead box family of transcription factors and plays an important role in thymic epithelial cell differentiation and development. FOXN1 mutations in humans and mice give rise to the "nude" phenotype, which is marked by athymia. FOXN1 belongs to a subset of the FOX family that recognizes an alternative forkhead-like (FHL) consensus sequence (GACGC) that is different from the more widely recognized forkhead (FKH) sequence RYAAAYA (where R is purine, and Y is pyrimidine). Here, we present the FOXN1 structure in complex with DNA containing an FHL motif at 1.6 Å resolution, in which the DNA sequence is recognized by a mixture of direct and water-mediated contacts provided by residues in an α-helix inserted in the DNA major groove (the recognition helix). Comparisons with the structure of other FOX family members revealed that the FKH and FHL DNA sequences are bound in two distinct modes, with partially different registers for the protein DNA contacts. We identified a single alternative rotamer within the recognition helix itself as an important determinant of DNA specificity and found protein sequence features in the recognition helix that could be used to predict the specificity of other FOX family members. Finally, we demonstrate that the C-terminal region of FOXN1 is required for high-affinity DNA binding and that FOXN1 has a significantly reduced affinity for DNA that contains 5'-methylcytosine, which may have implications for the role of FOXN1 in thymic involution.


Assuntos
DNA/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Sítios de Ligação , Cristalografia por Raios X , DNA/química , Metilação de DNA , Ensaio de Desvio de Mobilidade Eletroforética , Fatores de Transcrição Forkhead/química , Fatores de Transcrição Forkhead/genética , Humanos , Ligação Proteica , Conformação Proteica em alfa-Hélice , Estrutura Terciária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Alinhamento de Sequência
8.
Orphanet J Rare Dis ; 12(1): 6, 2017 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-28077132

RESUMO

Nude severe combined immunodeficiency is a rare inherited disease caused by autosomal recessive loss-of-function mutations in FOXN1. This gene encodes a transcription factor essential for the development of the thymus, the primary lymphoid organ that supports T-cell development and selection. To date nine cases have been reported presenting with the clinical triad of absent thymus resulting in severe T-cell immunodeficiency, congenital alopecia universalis and nail dystrophy. Diagnosis relies on testing for FOXN1 mutations, which allows genetic counselling and guides therapeutic management. Options for treating the underlying immune deficiency include HLA-matched genoidentical haematopoietic cell transplantation containing mature donor T-cells or thymus tissue transplantation. Experience from other severe combined immune deficiency syndromes suggests that early diagnosis, supportive care and definitive management result in better patient outcomes. Without these the prognosis is poor due to early-onset life threatening infections.


Assuntos
Fatores de Transcrição Forkhead/deficiência , Fatores de Transcrição Forkhead/metabolismo , Imunodeficiência Combinada Severa/metabolismo , Alopecia/genética , Alopecia/metabolismo , Alopecia/patologia , Animais , Fatores de Transcrição Forkhead/genética , Camundongos Nus , Camundongos SCID , Mutação/genética , Receptores de Interleucina-7/genética , Receptores de Interleucina-7/metabolismo , Imunodeficiência Combinada Severa/genética , Imunodeficiência Combinada Severa/patologia , Linfócitos T/metabolismo
9.
Blood Adv ; 1(23): 2083-2087, 2017 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-29296855

RESUMO

CDH17 is expressed in human thymic epithelial cells.CDH17 mutations may be a rare cause of leaky severe combined immune deficiency that can be corrected by HSCT.

10.
J Vis Exp ; (79): e50951, 2013 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-24084687

RESUMO

In this protocol we provide a method to isolate dendritic cells (DC) and epithelial cells (TEC) from the human thymus. DC and TEC are the major antigen presenting cell (APC) types found in a normal thymus and it is well established that they play distinct roles during thymic selection. These cells are localized in distinct microenvironments in the thymus and each APC type makes up only a minor population of cells. To further understand the biology of these cell types, characterization of these cell populations is highly desirable but due to their low frequency, isolation of any of these cell types requires an efficient and reproducible procedure. This protocol details a method to obtain cells suitable for characterization of diverse cellular properties. Thymic tissue is mechanically disrupted and after different steps of enzymatic digestion, the resulting cell suspension is enriched using a Percoll density centrifugation step. For isolation of myeloid DC (CD11c(+)), cells from the low-density fraction (LDF) are immunoselected by magnetic cell sorting. Enrichment of TEC populations (mTEC, cTEC) is achieved by depletion of hematopoietic (CD45(hi)) cells from the low-density Percoll cell fraction allowing their subsequent isolation via fluorescence activated cell sorting (FACS) using specific cell markers. The isolated cells can be used for different downstream applications.


Assuntos
Técnicas Citológicas/métodos , Células Dendríticas/citologia , Células Epiteliais/citologia , Separação Imunomagnética/métodos , Células Mieloides/citologia , Timo/citologia , Centrifugação com Gradiente de Concentração/métodos , Células Dendríticas/imunologia , Células Epiteliais/imunologia , Humanos , Células Mieloides/imunologia , Timo/imunologia
11.
Nat Commun ; 4: 2039, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23783831

RESUMO

Ever since it was discovered that central tolerance to self is imposed on developing T cells in the thymus through their interaction with self-peptide major histocompatibility complexes on thymic antigen-presenting cells, immunologists have speculated about the nature of these peptides, particularly in humans. Here, to shed light on the so-far unknown human thymic peptide repertoire, we analyse peptides eluted from isolated thymic dendritic cells, dendritic cell-depleted antigen-presenting cells and whole thymus. Bioinformatic analysis of the 842 identified natural major histocompatibility complex I and II ligands reveals significant cross-talk between major histocompatibility complex-class I and II pathways and differences in source protein representation between individuals as well as different antigen-presenting cells. Furthermore, several autoimmune- and tumour-related peptides, from enolase and vimentin for example, are presented in the healthy thymus. 302 peptides are directly derived from negatively selecting dendritic cells, thus providing the first global view of the peptide matrix in the human thymus that imposes self-tolerance in vivo.


Assuntos
Tolerância Central/imunologia , Complexo Principal de Histocompatibilidade/imunologia , Peptídeos/imunologia , Timo/imunologia , Adolescente , Apresentação de Antígeno/imunologia , Células Apresentadoras de Antígenos/imunologia , Autoantígenos/imunologia , Autoimunidade/imunologia , Antígeno CD11c/metabolismo , Pré-Escolar , Células Dendríticas/citologia , Células Dendríticas/imunologia , Epitopos/imunologia , Feminino , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Classe II/metabolismo , Humanos , Lactente , Ligantes , Masculino , Células Mieloides/citologia , Linfócitos T/citologia , Linfócitos T/imunologia , Timo/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...