Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Boundary Layer Meteorol ; 188(3): 523-551, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37701414

RESUMO

Eddy-covariance data from five stations in the Inn Valley, Austria, are analyzed for stable conditions to determine the gap scale that separates turbulent from large-scale, non-turbulent motions. The gap scale is identified from (co)spectra calculated from different variables using both Fourier analysis and multi-resolution flux decomposition. A correlation is found between the gap scale and the mean wind speed and stability parameter z/L that is used to determine a time-varying filter time, whose performance in separating turbulent and non-turbulent motions is compared to the performance of constant filter times between 0.5 and 30 min. The impact of applying different filter times on the turbulence statistics depends on the parameter and location, with a comparatively smaller impact on the variance of the vertical wind component than on the horizontal components and the turbulent fluxes. Results indicate that a time-varying filter time based on a multi-variable fit taking both mean wind speed and stability into account and a constant filter time of 2-3 min perform best in that they remove most of the non-turbulent motions while at the same time capturing most of the turbulence. For the studied sites and conditions, a time-varying filter time does not outperform a well chosen constant filter time because of relatively small variations in the filter time predicted by the correlation with mean flow parameters.

2.
Boundary Layer Meteorol ; 182(3): 335-362, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35221343

RESUMO

We present a comprehensive analysis of four south föhn events observed during the Penetration and Interruption of Alpine Foehn (PIANO) field campaign in the Inn Valley, Austria, in the vicinity of Innsbruck. The goal is to detect and quantify processes of cold-air pool (CAP) erosion by föhn as well as processes of föhn breakdown. Despite differences in föhn breakthrough and strength, the four cases exhibit similarities in CAP evolution: initially, the CAP experienced strongest warming in the centre of Innsbruck, where the föhn jet from the Wipp Valley interacted with the CAP in the Inn Valley. The resulting shear-flow instability at the föhn-CAP interface caused turbulent CAP erosion and, together with vertical warm-air advection, led to CAP depression over the city centre. This depression drove pre-föhn westerlies near the surface that caused cold-air advection inside the CAP west of the city centre and warm-air advection in the east. Ultimately, the latter contributed to stronger CAP erosion in the east than in the west. This stronger heating also explains the preferential initial föhn breakthrough at the valley floor east of Innsbruck. In two of the cases, subsequent westward propagation of the föhn-CAP boundary across the city accompanied by northerly (deflected) föhn winds led to a complete föhn breakthrough. Föhn breakdown occurred either by a backflow of the CAP remnant or by a cold-frontal passage. This study emphasizes the importance of both turbulence and advection in the CAP heat budget and reveal their large spatio-temporal variability. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10546-021-00663-9.

3.
J Geophys Res Atmos ; 124(3): 1428-1448, 2019 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-30854274

RESUMO

The development of a unified similarity scaling has so far failed over complex surfaces, as scaling studies show large deviations from the empirical formulations developed over flat and horizontally homogeneous terrain as well as large deviations between the different complex terrain data sets. However, a recent study of turbulence anisotropy for flat and horizontally homogeneous terrain has shown that separating the data according to the limiting states of anisotropy (isotropic, two-component axisymmetric and one-component turbulence) improves near-surface scaling. In this paper we explore whether this finding can be extended to turbulence over inclined and horizontally heterogeneous surfaces by examining near-surface scaling for 12 different data sets obtained over terrain ranging from flat to mountainous. Although these data sets show large deviations in scaling when all anisotropy types are examined together, the separation according to the limiting states of anisotropy significantly improves the collapse of data onto common scaling relations, indicating the possibility of a unified framework for turbulence scaling. A measure of turbulence complexity is developed, and the causes for the breakdown of scaling and the physical mechanisms behind the turbulence complexity encountered over complex terrain are identified and shown to be related to the distance to the isotropic state, prevalence of directional shear with height in mountainous terrain, and the deviations from isotropy in the inertial subrange.

4.
Boundary Layer Meteorol ; 169(1): 11-46, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30393387

RESUMO

The scaled standard deviations of temperature and humidity are investigated in complex terrain. The study area is a steep Alpine valley, with six measurement sites of different slope, orientation and roughness (i-Box experimental site, Inn Valley, Austria). Examined here are several assumptions forming the basis of Monin-Obukhov similarity theory (MOST), including constant turbulence fluxes with height and the degree of self-correlation between the involved turbulence variables. Since the basic assumptions for the applicability of the MOST approach-horizontally homogeneous and flat conditions-are violated, the analysis is performed based on a local similarity hypothesis. The scaled standard deviations as a function of local stability are compared with previous studies from horizontally homogeneous and flat terrain, horizontally inhomogeneous and flat terrain, weakly inhomogeneous and flat terrain, as well as complex terrain. As a reference, similarity relations for unstable and stable conditions are evaluated using turbulence data from the weakly inhomogeneous and flat terrain of the Cabauw experimental site in the Netherlands, and assessed with the same post-processing method as the i-Box data. Significant differences from the reference curve and also among the i-Box sites are noted, especially for data derived from the i-Box sites with steep slopes. These differences concern the slope and the magnitude of the best-fit curves, illustrating the site dependence of any similarity theory.

5.
Boundary Layer Meteorol ; 168(1): 1-27, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30996389

RESUMO

The correct simulation of the atmospheric boundary layer (ABL) is crucial for reliable weather forecasts in truly complex terrain. However, common assumptions for model parametrizations are only valid for horizontally homogeneous and flat terrain. Here, we evaluate the turbulence parametrization of the numerical weather prediction model COSMO with a horizontal grid spacing of Δ x = 1.1 km for the Inn Valley, Austria. The long-term, high-resolution turbulence measurements of the i-Box measurement sites provide a useful data pool of the ABL structure in the valley and on slopes. We focus on days and nights when ABL processes dominate and a thermally-driven circulation is present. Simulations are performed for case studies with both a one-dimensional turbulence parametrization, which only considers the vertical turbulent exchange, and a hybrid turbulence parametrization, also including horizontal shear production and advection in the budget of turbulence kinetic energy (TKE). We find a general underestimation of TKE by the model with the one-dimensional turbulence parametrization. In the simulations with the hybrid turbulence parametrization, the modelled TKE has a more realistic structure, especially in situations when the TKE production is dominated by shear related to the afternoon up-valley flow, and during nights, when a stable ABL is present. The model performance also improves for stations on the slopes. An estimation of the horizontal shear production from the observation network suggests that three-dimensional effects are a relevant part of TKE production in the valley.

6.
Int J Biometeorol ; 61(1): 23-33, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27317399

RESUMO

One of the key input parameters for numerical pollen forecasts is the distribution of pollen sources. Generally, three different methodologies exist to assemble such distribution maps: (1) plant inventories, (2) land use data in combination with annual pollen counts, and (3) ecological modeling. We have used six exemplary maps for all of these methodologies to study their applicability and usefulness in numerical pollen forecasts. The ragweed pollen season of 2012 in France has been simulated with the numerical weather prediction model COSMO-ART using each of the distribution maps in turn. The simulated pollen concentrations were statistically compared to measured values to derive a ranking of the maps with respect to their performance. Overall, approach (2) resulted in the best correspondence between observed and simulated pollen concentrations for the year 2012. It is shown that maps resulting from ecological modeling that does not include a sophisticated estimation of the plant density have a very low predictive skill. For inventory maps and the maps based on land use data and pollen counts, the results depend very much on the observational site. The use of pollen counts to calibrate the map enhances the performance of the model considerably.


Assuntos
Poluentes Atmosféricos/análise , Alérgenos/análise , Antígenos de Plantas/isolamento & purificação , Modelos Teóricos , Extratos Vegetais/isolamento & purificação , Simulação por Computador , Monitoramento Ambiental , Previsões , França , Reprodutibilidade dos Testes
7.
PLoS One ; 7(4): e35723, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22539997

RESUMO

Global warming will lead to earlier beginnings and prolongation of growing seasons in temperate regions and will have pronounced effects on phenology and life-history adaptation in many species. These changes were not easy to simulate for actual phenologies because of the rudimentary temporal (season) and spatial (regional) resolution of climate model projections. We investigate the effect of climate change on the regional incidence of a pest insect with nearly worldwide distribution and very high potential for adaptation to season length and temperature--the Codling Moth, Cydia pomonella. Seasonal and regional climate change signals were downscaled to the hourly temporal scale of a pest phenology model and the spatial scale of pest habitats using a stochastic weather generator operating at daily scale in combination with a re-sampling approach for simulation of hourly weather data. Under future conditions of increased temperatures (2045-2074), the present risk of below 20% for a pronounced second generation (peak larval emergence) in Switzerland will increase to 70-100%. The risk of an additional third generation will increase from presently 0-2% to 100%. We identified a significant two-week shift to earlier dates in phenological stages, such as overwintering adult flight. The relative extent (magnitude) of first generation pupae and all later stages will significantly increase. The presence of first generation pupae and later stages will be prolonged. A significant decrease in the length of overlap of first and second generation larval emergence was identified. Such shifts in phenology may induce changes in life-history traits regulating the life cycle. An accordingly life-history adaptation in photoperiodic diapause induction to shorter day-length is expected and would thereby even more increase the risk of an additional generation. With respect to Codling Moth management, the shifts in phenology and voltinism projected here will require adaptations of plant protection strategies to maintain their sustainability.


Assuntos
Mudança Climática , Mariposas/fisiologia , Animais , Larva/fisiologia , Mariposas/crescimento & desenvolvimento , Fotoperíodo , Estudos Prospectivos , Reprodução , Estações do Ano , Temperatura
8.
Int J Biometeorol ; 56(6): 1113-21, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22395176

RESUMO

The aspiration efficiency of vertical and wind-oriented Air-O-Cell samplers was investigated in a field study using the pollen of hazel, sweet chestnut and birch. Collected pollen numbers were compared to measurements of a Hirst-type Burkard spore trap. The discrepancy between pollen counts is substantial in the case of vertical orientation. The results indicate a strong influence of wind velocity and inlet orientation relative to the freestream on the aspiration efficiency. Various studies reported on inertial effects on aerosol motion as function of wind velocity. The measurements were compared to a physically based model for the limited case of vertical blunt samplers. Additionally, a simple linear model based on pollen counts and wind velocity was developed. Both correction models notably reduce the error of vertically oriented samplers, whereas only the physically based model can be used on independent datasets. The study also addressed the precision error of the instruments used, which was substantial for both sampler types.


Assuntos
Monitoramento Ambiental/instrumentação , Modelos Teóricos , Pólen , Aerossóis , Betula , Corylus , Monitoramento Ambiental/métodos , Fagaceae , Vento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...