Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 19217, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37932415

RESUMO

The academic and scientific world in general is increasingly concerned about their inability to determine and ascertain the identity of the writer of a text. More and more often the question arises as to whether a scientific article or work handed in by a student was actually produced by the alleged author of the questioned text. The role of artificial intelligence (AI) is increasingly debated due to its dangers of undeclared use. A current example is undoubtedly the undeclared use of ChatGPT to write a scientific text. The article promotes an AI model-independent redundancy measure to support discrimination between hypotheses on authorship of various multilingual texts written by humans or produced by intelligence media such as ChatGPT. The syntax of texts written by humans tends to differ from that of texts produced by AIs. This difference can be grasped and quantified even with short texts (i.e. 1800 characters). This aspect of length is extremely important, because short texts imply a greater difficulty of analysis to characterize authorship. To meet the efficiency criteria required for the evaluation of forensic evidence, a probabilistic approach is implemented. In particular, to assess the value of the redundancy measure and to offer a consistent classification criterion, a metric called Bayes factor is implemented. The proposed Bayesian probabilistic method represents an original approach in stylometry. Analyses performed over multilingual texts (English and French) covering different scientific and human areas of interest (forensic science and socio-psycho-artistic topics) reveal the feasibility of a successful authorship discrimination with limited misclassification rates. Model performance is satisfactory even with small sample sizes.


Assuntos
Inteligência Artificial , Autoria , Humanos , Teorema de Bayes , Redação , Medicina Legal
2.
PLoS One ; 4(9): e6531, 2009 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-19727445

RESUMO

In E. coli, 10 to 15% of growing bacteria produce dimeric chromosomes during DNA replication. These dimers are resolved by XerC and XerD, two tyrosine recombinases that target the 28-nucleotide motif (dif) associated with the chromosome's replication terminus. In streptococci and lactococci, an alternative system is composed of a unique, Xer-like recombinase (XerS) genetically linked to a dif-like motif (dif(SL)) located at the replication terminus. Preliminary observations have suggested that the dif/Xer system is commonly found in bacteria with circular chromosomes but that assumption has not been confirmed in an exhaustive analysis. The aim of the present study was to extensively characterize the dif/Xer system in the proteobacteria, since this taxon accounts for the majority of genomes sequenced to date. To that end, we analyzed 234 chromosomes from 156 proteobacterial species and showed that most species (87.8%) harbor XerC and XerD-like recombinases and a dif-related sequence which (i) is located in non-coding sequences, (ii) is close to the replication terminus (as defined by the cumulative GC skew) (iii) has a palindromic structure, (iv) is encoded by a low G+C content and (v) contains a highly conserved XerD binding site. However, not all proteobacteria display this dif/XerCD system. Indeed, a sub-group of pathogenic epsilon-proteobacteria (including Helicobacter sp and Campylobacter sp) harbors a different recombination system, composed of a single recombinase (XerH) which is phylogenetically distinct from the other Xer recombinases and a motif (dif(H)) sharing homologies with dif(SL). Furthermore, no homologs to dif or Xer recombinases could be detected in small endosymbiont genomes or in certain bacteria with larger chromosomes like the Legionellales. This raises the question of the presence of other chromosomal deconcatenation systems in these species. Our study highlights the complexity of dif/Xer recombinase systems in proteobacteria and paves the way for systematic detection of these components in prokaryotes.


Assuntos
Campylobacter/genética , Proteínas de Escherichia coli/genética , Helicobacter/genética , Integrases/genética , Proteobactérias/genética , Recombinação Genética , Sequência de Bases , Sítios de Ligação , Escherichia coli/genética , Proteínas de Escherichia coli/fisiologia , Variação Genética , Genoma Bacteriano , Integrases/fisiologia , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Homologia de Sequência do Ácido Nucleico , Especificidade da Espécie
3.
BMC Genomics ; 10: 198, 2009 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-19397826

RESUMO

BACKGROUND: The increasing number of completely sequenced bacterial genomes allows comparing their architecture and genetic makeup. Such new information highlights the crucial role of lateral genetic exchanges in bacterial evolution and speciation. RESULTS: Here we analyzed the twelve sequenced genomes of Streptococcus pyogenes by a naïve approach that examines the preferential nucleotide usage along the chromosome, namely the usage of G versus C (GC-skew) and T versus A (TA-skew). The cumulative GC-skew plot presented an inverted V-shape composed of two symmetrical linear segments, where the minimum and maximum corresponded to the origin and terminus of DNA replication. In contrast, the cumulative TA-skew presented a V-shape, which segments were interrupted by several steep slopes regions (SSRs), indicative of a different nucleotide composition bias. Each S. pyogenes genome contained up to nine individual SSRs, encompassing all described strain-specific prophages. In addition, each genome contained a similar unique non-phage SSR, the core of which consisted of 31 highly homologous genes. This core includes the M-protein, other mga-related factors and other virulence genes, totaling ten intrinsic virulence genes. In addition to a high content in virulence-related genes and to a peculiar nucleotide bias, this SSR, which is 47 kb-long in a M1GAS strain, harbors direct repeats and a tRNA gene, suggesting a mobile element. Moreover, its complete absence in a M-protein negative group A Streptococcus natural isolate demonstrates that it could be spontaneously lost, but in vitro deletion experiments indicates that its excision occurred at very low rate. The stability of this SSR, combined to its presence in all sequenced S. pyogenes sequenced genome, suggests that it results from an ancient acquisition. CONCLUSION: Thus, this non-phagic SSR is compatible with a pathogenicity island, acquired before S. pyogenes speciation. Its potential excision might bear relevance for vaccine development, because vaccines targeting M-protein might select for M-protein-negative variants that still carry other virulence determinants.


Assuntos
Antígenos de Bactérias/genética , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Transporte/genética , Ilhas Genômicas/genética , Streptococcus pyogenes/genética , Composição de Bases , Deleção Cromossômica , Cromossomos Bacterianos/genética , Especiação Genética , Genoma Bacteriano , Genômica/métodos , Especificidade da Espécie , Streptococcus pyogenes/classificação , Streptococcus pyogenes/patogenicidade , Virulência/genética , Fatores de Virulência/genética
4.
BMC Evol Biol ; 7: 231, 2007 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-18021397

RESUMO

BACKGROUND: Along the chromosome of the obligate intracellular bacteria Protochlamydia amoebophila UWE25, we recently described a genomic island Pam100G. It contains a tra unit likely involved in conjugative DNA transfer and lgrE, a 5.6-kb gene similar to five others of P. amoebophila: lgrA to lgrD, lgrF. We describe here the structure, regulation and evolution of these proteins termed LGRs since encoded by "Large G+C-Rich" genes. RESULTS: No homologs to the whole protein sequence of LGRs were found in other organisms. Phylogenetic analyses suggest that serial duplications producing the six LGRs occurred relatively recently and nucleotide usage analyses show that lgrB, lgrE and lgrF were relocated on the chromosome. The C-terminal part of LGRs is homologous to Leucine-Rich Repeats domains (LRRs). Defined by a cumulative alignment score, the 5 to 18 concatenated octacosapeptidic (28-meric) LRRs of LGRs present all a predicted alpha-helix conformation. Their closest homologs are the 28-residue RI-like LRRs of mammalian NODs and the 24-meres of some Ralstonia and Legionella proteins. Interestingly, lgrE, which is present on Pam100G like the tra operon, exhibits Pfam domains related to DNA metabolism. CONCLUSION: Comparison of the LRRs, enable us to propose a parsimonious evolutionary scenario of these domains driven by adjacent concatenations of LRRs. Our model established on bacterial LRRs can be challenged in eucaryotic proteins carrying less conserved LRRs, such as NOD proteins and Toll-like receptors.


Assuntos
Chlamydiales/genética , Evolução Molecular , Sequência Rica em GC , Genes Bacterianos , Leucina/genética , Proteínas/genética , Motivos de Aminoácidos , Proteínas de Bactérias/genética , Ilhas Genômicas , Proteínas de Repetições Ricas em Leucina , Sequências Repetitivas de Aminoácidos , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
5.
Astrobiology ; 7(1): 1-9, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17407400

RESUMO

We launched a cryptoendolithic habitat, made of a gneissic impactite inoculated with Chroococcidiopsis sp., into Earth orbit. After orbiting the Earth for 16 days, the rock entered the Earth's atmosphere and was recovered in Kazakhstan. The heat of entry ablated and heated the rock to a temperature well above the upper temperature limit for life to below the depth at which light levels are insufficient for photosynthetic organisms ( approximately 5 mm), thus killing all of its photosynthetic inhabitants. This experiment shows that atmospheric transit acts as a strong biogeographical dispersal filter to the interplanetary transfer of photosynthesis. Following atmospheric entry we found that a transparent, glassy fusion crust had formed on the outside of the rock. Re-inoculated Chroococcidiopsis grew preferentially under the fusion crust in the relatively unaltered gneiss beneath. Organisms under the fusion grew approximately twice as fast as the organisms on the control rock. Thus, the biologically destructive effects of atmospheric transit can generate entirely novel and improved endolithic habitats for organisms on the destination planetary body that survive the dispersal filter. The experiment advances our understanding of how island biogeography works on the interplanetary scale.


Assuntos
Meio Ambiente Extraterreno , Fotossíntese , Cianobactérias/crescimento & desenvolvimento , Cianobactérias/metabolismo , Ecossistema , Exobiologia , Fenômenos Geológicos , Geologia , Voo Espacial
6.
FEMS Microbiol Lett ; 271(2): 187-92, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17442016

RESUMO

Nucleotide composition analyses of bacterial genomes such as cumulative GC skew highlight the atypical, strongly asymmetric architecture of the recently published chromosome of Idiomarina loihiensis L2TR, suggesting that an inversion of a 600-kb chromosomal segment occurred. The presence of 3.4-kb inverted repeated sequences at the borders of the putative rearrangement supports this hypothesis. Reverting in silico this segment restores (1) a symmetric chromosome architecture; (2) the co-orientation of transcription of all rRNA operons with DNA replication; and (3) a better conservation of gene order between this chromosome and other gamma-proteobacterial ones. Finally, long-range PCRs encompassing the ends of the 600-kb segment reveal the existence of the reverted configuration but not of the published one. This demonstrates how cumulative nucleotide-skew analyses can validate genome assemblies.


Assuntos
Alteromonadaceae/genética , Cromossomos Bacterianos/genética , Genoma Bacteriano/genética , Inversão Cromossômica , Biologia Computacional/métodos , DNA Bacteriano/genética , Reação em Cadeia da Polimerase
7.
BMC Microbiol ; 5: 60, 2005 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-16223444

RESUMO

BACKGROUND: Analysis of the first reported complete genome sequence of Bifidobacterium longum NCC2705, an actinobacterium colonizing the gastrointestinal tract, uncovered its proteomic relatedness to Streptomyces coelicolor and Mycobacterium tuberculosis. However, a rapid scrutiny by genometric methods revealed a genome organization totally different from all so far sequenced high-GC Gram-positive chromosomes. RESULTS: Generally, the cumulative GC- and ORF orientation skew curves of prokaryotic genomes consist of two linear segments of opposite slope: the minimum and the maximum of the curves correspond to the origin and the terminus of chromosome replication, respectively. However, analyses of the B. longum NCC2705 chromosome yielded six, instead of two, linear segments, while its dnaA locus, usually associated with the origin of replication, was not located at the minimum of the curves. Furthermore, the coorientation of gene transcription with replication was very low. Comparison with closely related actinobacteria strongly suggested that the chromosome of B. longum was misassembled, and the identification of two pairs of relatively long homologous DNA sequences offers the possibility for an alternative genome assembly proposed here below. By genometric criteria, this configuration displays all of the characters common to bacteria, in particular to related high-GC Gram-positives. In addition, it is compatible with the partially sequenced genome of DJO10A B. longum strain. Recently, a corrected sequence of B. longum NCC2705, with a configuration similar to the one proposed here below, has been deposited in GenBank, confirming our predictions. CONCLUSION: Genometric analyses, in conjunction with standard bioinformatic tools and knowledge of bacterial chromosome architecture, represent fast and straightforward methods for the evaluation of chromosome assembly.


Assuntos
Bifidobacterium/genética , Cromossomos Bacterianos , Genoma Bacteriano , Técnicas Genéticas , Dados de Sequência Molecular , Fases de Leitura Aberta , Alinhamento de Sequência , Software
8.
BMC Microbiol ; 4: 48, 2004 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-15615594

RESUMO

BACKGROUND: The genome of Protochlamydia amoebophila UWE25, a Parachlamydia-related endosymbiont of free-living amoebae, was recently published, providing the opportunity to search for genomic islands (GIs). RESULTS: On the residual cumulative G+C content curve, a G+C-rich 19-kb region was observed. This sequence is part of a 100-kb chromosome region, containing 100 highly co-oriented ORFs, flanked by two 17-bp direct repeats. Two identical gly-tRNA genes in tandem are present at the proximal end of this genetic element. Several mobility genes encoding transposases and bacteriophage-related proteins are located within this chromosome region. Thus, this region largely fulfills the criteria of GIs. The G+C content analysis shows that several modules compose this GI. Surprisingly, one of them encodes all genes essential for F-like conjugative DNA transfer (traF, traG, traH, traN, traU, traW, and trbC), involved in sex pilus retraction and mating pair stabilization, strongly suggesting that, similarly to the other F-like operons, the parachlamydial tra unit is devoted to DNA transfer. A close relatedness of this tra unit to F-like tra operons involved in conjugative transfer is confirmed by phylogenetic analyses performed on concatenated genes and gene order conservation. These analyses and that of gly-tRNA distribution in 140 GIs suggest a proteobacterial origin of the parachlamydial tra unit. CONCLUSIONS: A GI of the UWE25 chromosome encodes a potentially functional F-like DNA conjugative system. This is the first hint of a putative conjugative system in chlamydiae. Conjugation most probably occurs within free-living amoebae, that may contain hundreds of Parachlamydia bacteria tightly packed in vacuoles. Such a conjugative system might be involved in DNA transfer between internalized bacteria. Since this system is absent from the sequenced genomes of Chlamydiaceae, we hypothesize that it was acquired after the divergence between Parachlamydiaceae and Chlamydiaceae, when the Parachlamydia-related symbiont was an intracellular bacteria. It suggests that this heterologous DNA was acquired from a phylogenetically-distant bacteria sharing an amoebal vacuole. Since Parachlamydiaceae are emerging agents of pneumonia, this GI might be involved in pathogenicity. In future, conjugative systems might be developed as genetic tools for Chlamydiales.


Assuntos
Chlamydiales/genética , Cromossomos Bacterianos/genética , Conjugação Genética/genética , Ilhas Genômicas/genética , Óperon/genética , Acanthamoeba/microbiologia , Animais , Composição de Bases/genética , Chlamydiales/classificação , Biologia Computacional/métodos , DNA Bacteriano/genética , Ordem dos Genes/genética , Filogenia , Simbiose
9.
Gene ; 340(1): 45-52, 2004 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-15556293

RESUMO

Selective pressures related to gene function and chromosomal architecture are acting on genome sequences and can be revealed, for instance, by appropriate genometric methods. Cumulative nucleotide skew analyses, i.e., GC, TA, and ORF orientation skews, predict the location of the origin of DNA replication for 88 out of 100 completely sequenced bacterial chromosomes. These methods appear fully reliable for proteobacteria, Gram-positives, and spirochetes as well as for euryarchaeotes. Based on this genome architecture information, coorientation analyses reveal that in prokaryotes, ribosomal RNA (rRNA) genes encoding the small and large ribosomal subunits are all transcribed in the same direction as DNA replication; that is, they are located along the leading strand. This result offers a simple and reliable method for circumscribing the region containing the origin of the DNA replication and reveals a strong selective pressure acting on the orientation of rRNA genes similar to the weaker one acting on the orientation of ORFs. Rate of coorientation of transfer RNA (tRNA) genes with DNA replication appears to be taxon-specific. Analyzing nucleotide biases such as GC and TA skews of genes and plotting one against the other reveals a taxonomic clusterization of species. All ribosomal RNA genes are enriched in Gs and depleted in Cs, the only so far known exception being the rRNA genes of deuterostomian mitochondria. However, this exception can be explained by the fact that in the chromosome of the human mitochondrion, the model of the deuterostomian organelle genome, DNA replication, and rRNA transcription proceed in opposite directions. A general rule is deduced from prokaryotic and mitochondrial genomes: ribosomal RNA genes that are transcribed in the same direction as the DNA replication are enriched in Gs, and those transcribed in the opposite direction are depleted in Gs.


Assuntos
Cromossomos de Archaea/genética , Cromossomos Bacterianos/genética , Genoma Arqueal , Genoma Bacteriano , Composição de Bases/genética , Replicação do DNA/genética , DNA Circular/genética , DNA Mitocondrial/genética , Bases de Dados de Ácidos Nucleicos , Humanos , Modelos Genéticos , Filogenia , RNA Ribossômico/genética , Origem de Replicação/genética , Transcrição Gênica/genética
10.
Nucleic Acids Res ; 30(1): 142-4, 2002 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-11752276

RESUMO

The ever increasing rate at which whole genome sequences are becoming accessible to the scientific community has created an urgent need for tools enabling comparison of chromosomes of different species. We have applied biometric methods to available chromosome sequences and posted the results on our Comparative Genometrics (CG) web site. By genometrics, a term coined by Elston and Wilson [GENET: Epidemiol. (1990), 7, 17-19], we understand a biometric analysis of chromosomes. During the initial phase, our web site displays, for all completely sequenced prokaryotic genomes, three genometric analyses: the DNA walk [Lobry (1999) Microbiology Today, 26, 164-165] and two complementary representations, i.e. the cumulative GC- and TA-skew analyses, capable of identifying, at the level of whole genomes, features inherent to chromosome organization and functioning. It appears that the latter features are taxon-specific. Although primarily focused on prokaryotic chromosomes, the CG web site contains genometric information on paradigm plasmids, phages, viruses and eukaryotic organelles. Relevant data and methods can be readily used by the scientific community for further analyses as well as for tutorial purposes. Our data posted at the CG web site are freely available on the World Wide Web at http://www.unil.ch/comparativegenometrics.


Assuntos
Cromossomos Bacterianos , Bases de Dados Genéticas , Genoma Bacteriano , Bacteriófagos/genética , Biometria , Passeio de Cromossomo , DNA Viral/genética , Armazenamento e Recuperação da Informação , Internet , Organelas/metabolismo , Plasmídeos/genética , Homologia de Sequência do Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...