Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(13): eadk4423, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38536911

RESUMO

DNA methyltransferase inhibitor (DNMTi) efficacy in solid tumors is limited. Colon cancer cells exposed to DNMTi accumulate lysine-27 trimethylation on histone H3 (H3K27me3). We propose this Enhancer of Zeste Homolog 2 (EZH2)-dependent repressive modification limits DNMTi efficacy. Here, we show that low-dose DNMTi treatment sensitizes colon cancer cells to select EZH2 inhibitors (EZH2is). Integrative epigenomic analysis reveals that DNMTi-induced H3K27me3 accumulates at genomic regions poised with EZH2. Notably, combined EZH2i and DNMTi alters the epigenomic landscape to transcriptionally up-regulate the calcium-induced nuclear factor of activated T cells (NFAT):activating protein 1 (AP-1) signaling pathway. Blocking this pathway limits transcriptional activating effects of these drugs, including transposable element and innate immune response gene expression involved in viral defense. Analysis of primary human colon cancer specimens reveals positive correlations between DNMTi-, innate immune response-, and calcium signaling-associated transcription profiles. Collectively, we show that compensatory EZH2 activity limits DNMTi efficacy in colon cancer and link NFAT:AP-1 signaling to epigenetic therapy-induced viral mimicry.


Assuntos
Neoplasias do Colo , Proteína Potenciadora do Homólogo 2 de Zeste , Histonas , Humanos , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Histonas/metabolismo , Metilação , Transdução de Sinais , Fator de Transcrição AP-1/metabolismo
2.
bioRxiv ; 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38405904

RESUMO

The RING E3 ubiquitin ligase UHRF1 is an established cofactor for DNA methylation inheritance. Nucleosomal engagement through histone and DNA interactions directs UHRF1 ubiquitin ligase activity toward lysines on histone H3 tails, creating binding sites for DNMT1 through ubiquitin interacting motifs (UIM1 and UIM2). Here, we profile contributions of UHRF1 and DNMT1 to genome-wide DNA methylation inheritance and dissect specific roles for ubiquitin signaling in this process. We reveal DNA methylation maintenance at low-density CpGs is vulnerable to disruption of UHRF1 ubiquitin ligase activity and DNMT1 ubiquitin reading activity through UIM1. Hypomethylation of low-density CpGs in this manner induces formation of partially methylated domains (PMD), a methylation signature observed across human cancers. Furthermore, disrupting DNMT1 UIM2 function abolishes DNA methylation maintenance. Collectively, we show DNMT1-dependent DNA methylation inheritance is a ubiquitin-regulated process and suggest a disrupted UHRF1-DNMT1 ubiquitin signaling axis contributes to the development of PMDs in human cancers.

3.
mBio ; 15(4): e0327823, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38411116

RESUMO

The fate of herpesvirus genomes following entry into different cell types is thought to regulate the outcome of infection. For the Herpes simplex virus 1 (HSV-1), latent infection of neurons is characterized by association with repressive heterochromatin marked with Polycomb silencing-associated lysine 27 methylation on histone H3 (H3K27me). However, whether H3K27 methylation plays a role in repressing lytic gene expression in non-neuronal cells is unclear. To address this gap in knowledge, and with consideration that the fate of the viral genome and outcome of HSV-1 infection could be heterogeneous, we developed an assay to quantify the abundance of histone modifications within single viral genome foci of infected fibroblasts. Using this approach, combined with bulk epigenetic techniques, we were unable to detect any role for H3K27me3 during HSV-1 lytic infection of fibroblasts. By contrast, we could detect the lesser studied H3K27me2 on a subpopulation of viral genomes, which was consistent with a role for H3K27 demethylases in promoting lytic gene expression. In addition, viral genomes co-localized with the H3K27me2 reader protein PHF20L1, and this association was enhanced by inhibition of the H3K27 demethylases UTX and JMJD3. Notably, targeting of H3K27me2 to viral genomes was enhanced following infection with a transcriptionally defective virus in the absence of Promyelocytic leukemia nuclear bodies. Collectively, these studies implicate a role for H3K27me2 in fibroblast-associated HSV genome silencing in a manner dependent on genome sub-nuclear localization and transcriptional activity. IMPORTANCE: Investigating the potential mechanisms of gene silencing for DNA viruses in different cell types is important to understand the differential outcomes of infection, particularly for viruses like herpesviruses that can undergo distinct types of infection in different cell types. In addition, investigating chromatin association with viral genomes informs on the mechanisms of epigenetic regulation of DNA processes. However, there is a growing appreciation for heterogeneity in the outcome of infection at the single cell, and even single viral genome, level. Here we describe a novel assay for quantifying viral genome foci with chromatin proteins and show that a portion of genomes are targeted for silencing by H3K27me2 and associate with the reader protein PHF20L1. This study raises important questions regarding the mechanism of H3K27me2-specific targeting to viral genomes, the contribution of epigenetic heterogeneity to herpesvirus infection, and the role of PHF20L1 in regulating the outcome of DNA virus infection.


Assuntos
Herpes Simples , Herpesvirus Humano 1 , Humanos , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Epigênese Genética , Fibroblastos , Herpesvirus Humano 1/fisiologia
4.
J Mol Biol ; 436(7): 168394, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38092287

RESUMO

DNA methylation is a well-studied epigenetic modification that has key roles in regulating gene expression, maintaining genome integrity, and determining cell fate. Precisely how DNA methylation patterns are established and maintained in specific cell types at key developmental stages is still being elucidated. However, research over the last two decades has contributed to our understanding of DNA methylation regulation by other epigenetic processes. Specifically, lysine methylation on key residues of histone proteins has been shown to contribute to the allosteric regulation of DNA methyltransferase (DNMT) activities. In this review, we discuss the dynamic interplay between DNA methylation and histone lysine methylation as epigenetic regulators of genome function by synthesizing key recent studies in the field. With a focus on DNMT3 enzymes, we discuss mechanisms of DNA methylation and histone lysine methylation crosstalk in the regulation of gene expression and the maintenance of genome integrity. Further, we discuss how alterations to the balance of various sites of histone lysine methylation and DNA methylation contribute to human developmental disorders and cancers. Finally, we provide perspectives on the current direction of the field and highlight areas for continued research and development.


Assuntos
Metilação de DNA , Epigênese Genética , Histonas , Lisina , Humanos , Histonas/genética , Histonas/metabolismo , Lisina/metabolismo , Processamento de Proteína Pós-Traducional
5.
bioRxiv ; 2023 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-38076966

RESUMO

The fate of herpesvirus genomes following entry into different cell types is thought to regulate the outcome of infection. For the Herpes simplex virus 1 (HSV-1), latent infection of neurons is characterized by association with repressive heterochromatin marked with Polycomb silencing-associated lysine 27 methylation on histone H3 (H3K27me). However, whether H3K27 methylation plays a role in repressing lytic gene expression in non-neuronal cells is unclear. To address this gap in knowledge, and with consideration that the fate of the viral genome and outcome of HSV-1 infection could be heterogeneous, we developed an assay to quantify the abundance of histone modifications within single viral genome foci of infected fibroblasts. Using this approach, combined with bulk epigenetic techniques, we were unable to detect any role for H3K27me3 during HSV-1 lytic infection of fibroblasts. In contrast, we could detect the lesser studied H3K27me2 on a subpopulation of viral genomes, which was consistent with a role for H3K27 demethylases in promoting lytic gene expression. This was consistent with a role for H3K27 demethylases in promoting lytic gene expression. In addition, viral genomes co-localized with the H3K27me2 reader protein PHF20L1, and this association was enhanced by inhibition of the H3K27 demethylases UTX and JMJD3. Notably, targeting of H3K27me2 to viral genomes was enhanced following infection with a transcriptionally defective virus in the absence of Promyelocytic leukemia nuclear bodies. Collectively, these studies implicate a role for H3K27me2 in fibroblast-associated HSV genome silencing in a manner dependent on genome sub-nuclear localization and transcriptional activity.

6.
Biochem J ; 480(23): 1969-1986, 2023 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-38054592

RESUMO

Lysine methylation signaling is well studied for its key roles in the regulation of transcription states through modifications on histone proteins. While histone lysine methylation has been extensively studied, recent discoveries of lysine methylation on thousands of non-histone proteins has broadened our appreciation for this small chemical modification in the regulation of protein function. In this review, we highlight the significance of histone and non-histone lysine methylation signaling in skeletal muscle biology, spanning development, maintenance, regeneration, and disease progression. Furthermore, we discuss potential future implications for its roles in skeletal muscle biology as well as clinical applications for the treatment of skeletal muscle-related diseases.


Assuntos
Histonas , Lisina , Histonas/metabolismo , Lisina/metabolismo , Metilação , Músculo Esquelético/metabolismo , Desenvolvimento Muscular , Biologia
7.
bioRxiv ; 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37732208

RESUMO

The faithful segregation of intact genetic material and the perpetuation of chromatin states through mitotic cell divisions are pivotal for maintaining cell function and identity across cell generations. However, most exogenous mutagens generate long-lasting DNA lesions that are segregated during mitosis. How this segregation is controlled is unknown. Here, we uncover a mitotic chromatin-marking pathway that governs the segregation of UV-induced damage in human cells. Our mechanistic analyses reveal two layers of control: histone ADP-ribosylation, and the incorporation of newly synthesized histones at UV damage sites, that both prevent local mitotic phosphorylations on histone H3 serines. Functionally, this chromatin-marking pathway drives the asymmetric segregation of UV damage in the cell progeny with potential consequences on daughter cell fate. We propose that this mechanism may help preserve the integrity of stem cell compartments during asymmetric cell divisions.

8.
Immunity ; 56(9): 2021-2035.e8, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37516105

RESUMO

Environmental nutrient availability influences T cell metabolism, impacting T cell function and shaping immune outcomes. Here, we identified ketone bodies (KBs)-including ß-hydroxybutyrate (ßOHB) and acetoacetate (AcAc)-as essential fuels supporting CD8+ T cell metabolism and effector function. ßOHB directly increased CD8+ T effector (Teff) cell cytokine production and cytolytic activity, and KB oxidation (ketolysis) was required for Teff cell responses to bacterial infection and tumor challenge. CD8+ Teff cells preferentially used KBs over glucose to fuel the tricarboxylic acid (TCA) cycle in vitro and in vivo. KBs directly boosted the respiratory capacity and TCA cycle-dependent metabolic pathways that fuel CD8+ T cell function. Mechanistically, ßOHB was a major substrate for acetyl-CoA production in CD8+ T cells and regulated effector responses through effects on histone acetylation. Together, our results identify cell-intrinsic ketolysis as a metabolic and epigenetic driver of optimal CD8+ T cell effector responses.


Assuntos
Linfócitos T CD8-Positivos , Histonas , Ácido 3-Hidroxibutírico/metabolismo , Ácido 3-Hidroxibutírico/farmacologia , Acetilação , Histonas/metabolismo , Corpos Cetônicos , Animais , Camundongos
9.
Sci Rep ; 13(1): 7508, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37160995

RESUMO

We recently introduced an absolute and physical quantitative scale for chromatin immunoprecipitation followed by sequencing (ChIP-seq). The scale itself was determined directly from measurements routinely made on sequencing samples without additional reagents or spike-ins. We called this approach sans spike-in quantitative ChIP, or siQ-ChIP. Herein, we extend those results in several ways. First, we simplified the calculations defining the quantitative scale, reducing practitioner burden. Second, we reveal a normalization constraint implied by the quantitative scale and introduce a new scheme for generating 'tracks'. The constraint requires that tracks are probability distributions so that quantified ChIP-seq is analogous to a mass distribution. Third, we introduce some whole-genome analyses that allow us, for example, to project the IP mass (immunoprecipitated mass) onto the genome to evaluate how much of any genomic interval was captured in the IP. We applied siQ-ChIP to p300/CBP inhibition and compare our results to those of others. We detail how the same data-level observations are misinterpreted in the literature when tracks are not understood as probability densities and are compared without correct quantitative scaling, and we offer new interpretations of p300/CBP inhibition outcomes.


Assuntos
Código das Histonas , Nucleossomos , Nucleossomos/genética , Imunoprecipitação da Cromatina , Sequenciamento de Cromatina por Imunoprecipitação , Genômica
10.
Mol Cell ; 83(11): 1872-1886.e5, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37172591

RESUMO

Deregulated inflammation is a critical feature driving the progression of tumors harboring mutations in the liver kinase B1 (LKB1), yet the mechanisms linking LKB1 mutations to deregulated inflammation remain undefined. Here, we identify deregulated signaling by CREB-regulated transcription coactivator 2 (CRTC2) as an epigenetic driver of inflammatory potential downstream of LKB1 loss. We demonstrate that LKB1 mutations sensitize both transformed and non-transformed cells to diverse inflammatory stimuli, promoting heightened cytokine and chemokine production. LKB1 loss triggers elevated CRTC2-CREB signaling downstream of the salt-inducible kinases (SIKs), increasing inflammatory gene expression in LKB1-deficient cells. Mechanistically, CRTC2 cooperates with the histone acetyltransferases CBP/p300 to deposit histone acetylation marks associated with active transcription (i.e., H3K27ac) at inflammatory gene loci, promoting cytokine expression. Together, our data reveal a previously undefined anti-inflammatory program, regulated by LKB1 and reinforced through CRTC2-dependent histone modification signaling, that links metabolic and epigenetic states to cell-intrinsic inflammatory potential.


Assuntos
Histonas , Proteínas Serina-Treonina Quinases , Humanos , Histonas/genética , Histonas/metabolismo , Acetilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Citocinas/metabolismo , Inflamação/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
11.
bioRxiv ; 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36945621

RESUMO

We previously developed sans spike-in quantitative chromatin immunoprecipitation sequencing (siQ-ChIP), a technique that introduces an absolute quantitative scale to ChIP-seq data without reliance on spike-in normalization approaches. The physical model of siQ-ChIP predicted that the IP step of ChIP would produce a classical binding isotherm when antibody or epitope was titrated. Here, we define experimental conditions in which this titration is observable for antibodies that recognize modified states of histone proteins. We show that minimally sequenced points along an isotherm can reveal differential binding specificities that are associated with on- and off-target epitope interactions. This work demonstrates that the interpretation of histone post-translational modification distribution from ChIP-seq data has a dependence on antibody concentration. Collectively, these studies introduce a simplified and reproducible experimental method to generate quantitative ChIP-seq data without spike-in normalization and demonstrate that histone antibody specificity can be analyzed directly in ChIP-seq experiments.

12.
Sci Rep ; 13(1): 377, 2023 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-36611042

RESUMO

Lysine methylation modulates the function of histone and non-histone proteins, and the enzymes that add or remove lysine methylation-lysine methyltransferases (KMTs) and lysine demethylases (KDMs), respectively-are frequently mutated and dysregulated in human diseases. Identification of lysine methylation sites proteome-wide has been a critical barrier to identifying the non-histone substrates of KMTs and KDMs and for studying functions of non-histone lysine methylation. Detection of lysine methylation by mass spectrometry (MS) typically relies on the enrichment of methylated peptides by pan-methyllysine antibodies. In this study, we use peptide microarrays to show that pan-methyllysine antibodies have sequence bias, and we evaluate how the differential selectivity of these reagents impacts the detection of methylated peptides in MS-based workflows. We discovered that most commercially available pan-Kme antibodies have an in vitro sequence bias, and multiple enrichment approaches provide the most comprehensive coverage of the lysine methylome. Overall, global lysine methylation proteomics with multiple characterized pan-methyllysine antibodies resulted in the detection of 5089 lysine methylation sites on 2751 proteins from two human cell lines, nearly doubling the number of reported lysine methylation sites in the human proteome.


Assuntos
Lisina , Proteoma , Humanos , Lisina/metabolismo , Proteoma/metabolismo , Epigenoma , Metilação , Peptídeos/metabolismo , Anticorpos/metabolismo
13.
BMC Biol ; 20(1): 209, 2022 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-36153585

RESUMO

BACKGROUND: SWI/SNF (BAF) chromatin remodeling complexes regulate lineage-specific enhancer activity by promoting accessibility for diverse DNA-binding factors and chromatin regulators. Additionally, they are known to modulate the function of the epigenome through regulation of histone post-translational modifications and nucleosome composition, although the way SWI/SNF complexes govern the epigenome remains poorly understood. Here, we investigate the function of ARID1A, a subunit of certain mammalian SWI/SNF chromatin remodeling complexes associated with malignancies and benign diseases originating from the uterine endometrium. RESULTS: Through genome-wide analysis of human endometriotic epithelial cells, we show that more than half of ARID1A binding sites are marked by the variant histone H3.3, including active regulatory elements such as super-enhancers. ARID1A knockdown leads to H3.3 depletion and gain of canonical H3.1/3.2 at ARID1A-bound active regulatory elements, and a concomitant redistribution of H3.3 toward genic elements. ARID1A interactions with the repressive chromatin remodeler CHD4 (NuRD) are associated with H3.3, and ARID1A is required for CHD4 recruitment to H3.3. ZMYND8 interacts with CHD4 to suppress a subset of ARID1A, CHD4, and ZMYND8 co-bound, H3.3+ H4K16ac+ super-enhancers near genes governing extracellular matrix, motility, adhesion, and epithelial-to-mesenchymal transition. Moreover, these gene expression alterations are observed in human endometriomas. CONCLUSIONS: These studies demonstrate that ARID1A-containing BAF complexes are required for maintenance of the histone variant H3.3 at active regulatory elements, such as super-enhancers, and this function is required for the physiologically relevant activities of alternative chromatin remodelers.


Assuntos
Cromatina , Proteínas de Ligação a DNA , Histonas , Fatores de Transcrição , Cromatina/genética , Montagem e Desmontagem da Cromatina , DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Feminino , Histonas/genética , Humanos , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Nucleossomos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
14.
Genes Dev ; 35(23-24): 1642-1656, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34819353

RESUMO

Mutations in the PHIP/BRWD2 chromatin regulator cause the human neurodevelopmental disorder Chung-Jansen syndrome, while alterations in PHIP expression are linked to cancer. Precisely how PHIP functions in these contexts is not fully understood. Here we demonstrate that PHIP is a chromatin-associated CRL4 ubiquitin ligase substrate receptor and is required for CRL4 recruitment to chromatin. PHIP binds to chromatin through a trivalent reader domain consisting of a H3K4-methyl binding Tudor domain and two bromodomains (BD1 and BD2). Using semisynthetic nucleosomes with defined histone post-translational modifications, we characterize PHIPs BD1 and BD2 as respective readers of H3K14ac and H4K12ac, and identify human disease-associated mutations in each domain and the intervening linker region that likely disrupt chromatin binding. These findings provide new insight into the biological function of this enigmatic chromatin protein and set the stage for the identification of both upstream chromatin modifiers and downstream targets of PHIP in human disease.


Assuntos
Neoplasias , Transtornos do Neurodesenvolvimento , Cromatina , Histonas/metabolismo , Humanos , Proteínas de Membrana , Neoplasias/genética , Transtornos do Neurodesenvolvimento/genética , Nucleossomos , Proteínas Proto-Oncogênicas
15.
J Biol Chem ; 297(4): 101145, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34473995

RESUMO

Bromodomains (BD) are conserved reader modules that bind acetylated lysine residues on histones. Although much has been learned regarding the in vitro properties of these domains, less is known about their function within chromatin complexes. SWI/SNF chromatin-remodeling complexes modulate transcription and contribute to DNA damage repair. Mutations in SWI/SNF subunits have been implicated in many cancers. Here we demonstrate that the BD of Caenorhabditis elegans SMARCA4/BRG1, a core SWI/SNF subunit, recognizes acetylated lysine 14 of histone H3 (H3K14ac), similar to its Homo sapiens ortholog. We identify the interactions of SMARCA4 with the acetylated histone peptide from a 1.29 Å-resolution crystal structure of the CeSMARCA4 BD-H3K14ac complex. Significantly, most of the SMARCA4 BD residues in contact with the histone peptide are conserved with other proteins containing family VIII bromodomains. Based on the premise that binding specificity is conserved among bromodomain orthologs, we propose that loop residues outside of the binding pocket position contact residues to recognize the H3K14ac sequence. CRISPR-Cas9-mediated mutations in the SMARCA4 BD that abolish H3K14ac binding in vitro had little or no effect on C. elegans viability or physiological function in vivo. However, combining SMARCA4 BD mutations with knockdown of the SWI/SNF accessory subunit PBRM-1 resulted in severe developmental defects in animals. In conclusion, we demonstrated an essential function for the SWI/SNF bromodomain in vivo and detected potential redundancy in epigenetic readers in regulating chromatin remodeling. These findings have implications for the development of small-molecule BD inhibitors to treat cancers and other diseases.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Histonas/metabolismo , Fatores de Transcrição/metabolismo , Acetilação , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Histonas/genética , Humanos , Ligação Proteica , Fatores de Transcrição/genética
16.
Methods Mol Biol ; 2272: 97-140, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34009611

RESUMO

The 5-carbon positions on cytosine nucleotides preceding guanines in genomic DNA (CpG) are common targets for DNA methylation (5mC). DNA methylation removal can occur through both active and passive mechanisms. Ten-eleven translocation enzymes (TETs) oxidize 5mC in a stepwise manner to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). 5mC can also be removed passively through sequential cell divisions in the absence of DNA methylation maintenance. In this chapter, we describe approaches that couple TET-assisted bisulfite (TAB) and oxidative bisulfite (OxBS) conversion to the Illumina MethylationEPIC BeadChIP (EPIC array) and show how these technologies can be used to distinguish active versus passive DNA demethylation. We also describe integrative bioinformatics pipelines to facilitate this analysis.


Assuntos
Desmetilação do DNA , Metilação de DNA , DNA/análise , DNA/química , Epigênese Genética , Análise em Microsséries/métodos , Sulfitos/química , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/química , Biologia Computacional , Citosina/análogos & derivados , Citosina/química , DNA/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Oxirredução
17.
Cell Rep ; 34(3): 108638, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33472068

RESUMO

Histone acetylation levels are regulated by histone acetyltransferases (HATs) and histone deacetylases (HDACs) that antagonistically control the overall balance of this post-translational modification. HDAC inhibitors (HDACi) are potent agents that disrupt this balance and are used clinically to treat diseases including cancer. Despite their use, little is known about their effects on chromatin regulators, particularly those that signal through lysine acetylation. We apply quantitative genomic and proteomic approaches to demonstrate that HDACi robustly increases a low-abundance histone 4 polyacetylation state, which serves as a preferred binding substrate for several bromodomain-containing proteins, including BRD4. Increased H4 polyacetylation occurs in transcribed genes and correlates with the targeting of BRD4. Collectively, these results suggest that HDAC inhibition functions, at least in part, through expansion of a rare histone acetylation state, which then retargets lysine-acetyl readers associated with changes in gene expression, partially mimicking the effect of bromodomain inhibition.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Inibidores de Histona Desacetilases/uso terapêutico , Histonas/metabolismo , Fatores de Transcrição/metabolismo , Acetilação , Inibidores de Histona Desacetilases/farmacologia , Humanos
18.
Trends Biochem Sci ; 46(4): 258-269, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33308996

RESUMO

Chromatin functions are influenced by the addition, removal, and recognition of histone post-translational modifications (PTMs). Ubiquitin and ubiquitin-like (UBL) PTMs on histone proteins can function as signaling molecules by mediating protein-protein interactions. Fueled by the identification of novel ubiquitin and UBL sites and the characterization of the writers, erasers, and readers, the breadth of chromatin functions associated with ubiquitin signaling is emerging. Here, we highlight recently appreciated roles for histone ubiquitination in DNA methylation control, PTM crosstalk, nucleosome structure, and phase separation. We also discuss the expanding diversity and functions associated with histone UBL modifications. We conclude with a look toward the future and pose key questions that will drive continued discovery at the interface of epigenetics and ubiquitin signaling.


Assuntos
Cromatina , Código das Histonas , Histonas/metabolismo , Processamento de Proteína Pós-Traducional , Ubiquitina/metabolismo
19.
PLoS Biol ; 18(12): e3000975, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33306668

RESUMO

The anaphase-promoting complex/cyclosome (APC/C) is an E3 ubiquitin ligase and critical regulator of cell cycle progression. Despite its vital role, it has remained challenging to globally map APC/C substrates. By combining orthogonal features of known substrates, we predicted APC/C substrates in silico. This analysis identified many known substrates and suggested numerous candidates. Unexpectedly, chromatin regulatory proteins are enriched among putative substrates, and we show experimentally that several chromatin proteins bind APC/C, oscillate during the cell cycle, and are degraded following APC/C activation, consistent with being direct APC/C substrates. Additional analysis revealed detailed mechanisms of ubiquitylation for UHRF1, a key chromatin regulator involved in histone ubiquitylation and DNA methylation maintenance. Disrupting UHRF1 degradation at mitotic exit accelerates G1-phase cell cycle progression and perturbs global DNA methylation patterning in the genome. We conclude that APC/C coordinates crosstalk between cell cycle and chromatin regulatory proteins. This has potential consequences in normal cell physiology, where the chromatin environment changes depending on proliferative state, as well as in disease.


Assuntos
Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Cromatina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ciclossomo-Complexo Promotor de Anáfase/fisiologia , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/fisiologia , Ciclo Celular/fisiologia , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Cromatina/genética , Simulação por Computador , Células HEK293 , Células HeLa , Humanos , Processamento de Proteína Pós-Traducional , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/fisiologia , Ubiquitinação
20.
Cell Rep ; 33(10): 108473, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33296650

RESUMO

A role for cancer cell epithelial-to-mesenchymal transition (EMT) in cancer is well established. Here, we show that, in addition to cancer cell EMT, ovarian cancer cell metastasis relies on an epigenomic mesenchymal-to-epithelial transition (MET) in host mesenchymal stem cells (MSCs). These reprogrammed MSCs, termed carcinoma-associated MSCs (CA-MSCs), acquire pro-tumorigenic functions and directly bind cancer cells to serve as a metastatic driver/chaperone. Cancer cells induce this epigenomic MET characterized by enhancer-enriched DNA hypermethylation, altered chromatin accessibility, and differential histone modifications. This phenomenon appears clinically relevant, as CA-MSC MET is highly correlated with patient survival. Mechanistically, mirroring MET observed in development, MET in CA-MSCs is mediated by WT1 and EZH2. Importantly, EZH2 inhibitors, which are clinically available, significantly inhibited CA-MSC-mediated metastasis in mouse models of ovarian cancer.


Assuntos
Transição Epitelial-Mesenquimal/genética , Metástase Neoplásica/genética , Neoplasias Ovarianas/genética , Animais , Carcinoma Epitelial do Ovário/genética , Carcinoma Epitelial do Ovário/metabolismo , Carcinoma Epitelial do Ovário/patologia , Diferenciação Celular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Epigenoma/genética , Epigenômica/métodos , Feminino , Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Células-Tronco Mesenquimais/fisiologia , Camundongos , Camundongos Endogâmicos NOD , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Cultura Primária de Células , Transdução de Sinais/genética , Proteínas WT1/genética , Proteínas WT1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...