Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 11033, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744912

RESUMO

The presented paper discusses the production of radioactive ion beams of francium, radium, and actinium from thick uranium carbide (UC x ) targets at ISOLDE, CERN. This study focuses on the release curves and extractable yields of francium, radium and actinium isotopes. The ion source temperature was varied in order to study the relative contributions of surface and laser ionization to the production of the actinium ion beams. The experimental results are presented in the form of release parameters. Representative extractable yields per µ C are presented for 222 - 231 Ac, several Ra and Fr isotopes in the mass ranges 214 ≤ A ≤ 233 and 205 ≤ A ≤ 231 respectively. The release efficiency for several isotopes of each of the studied elements was calculated by comparing their yields to the estimated in-target production rates modeled by CERN-FLUKA. The maximal extraction efficiency of actinium was calculated to be 2.1(6)% for a combination of surface ionization using a Ta ion source and resonant laser ionization using the two-step 438.58 nm, and 424.69 nm scheme.

2.
Phys Rev Lett ; 131(20): 202501, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38039485

RESUMO

The changes in mean-squared charge radii of neutron-deficient gold nuclei have been determined using the in-source, resonance-ionization laser spectroscopy technique, at the ISOLDE facility (CERN). From these new data, nuclear deformations are inferred, revealing a competition between deformed and spherical configurations. The isotopes ^{180,181,182}Au are observed to possess well-deformed ground states and, when moving to lighter masses, a sudden transition to near-spherical shapes is seen in the extremely neutron-deficient nuclides, ^{176,177,179}Au. A case of shape coexistence and shape staggering is identified in ^{178}Au which has a ground and isomeric state with different deformations. These new data reveal a pattern in ground-state deformation unique to the gold isotopes, whereby, when moving from the heavy to light masses, a plateau of well-deformed isotopes exists around the neutron midshell, flanked by near-spherical shapes in the heavier and lighter isotopes-a trend hitherto unseen elsewhere in the nuclear chart. The experimental charge radii are compared to those from Hartree-Fock-Bogoliubov calculations using the D1M Gogny interaction and configuration mixing between states of different deformation. The calculations are constrained by the known spins, parities, and magnetic moments of the ground states in gold nuclei and show a good agreement with the experimental results.

3.
Phys Rev Lett ; 127(19): 192501, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34797155

RESUMO

The changes in the mean-square charge radius (relative to ^{209}Bi), magnetic dipole, and electric quadrupole moments of ^{187,188,189,191}Bi were measured using the in-source resonance-ionization spectroscopy technique at ISOLDE (CERN). A large staggering in radii was found in ^{187,188,189}Bi^{g}, manifested by a sharp radius increase for the ground state of ^{188}Bi relative to the neighboring ^{187,189}Bi^{g}. A large isomer shift was also observed for ^{188}Bi^{m}. Both effects happen at the same neutron number, N=105, where the shape staggering and a similar isomer shift were observed in the mercury isotopes. Experimental results are reproduced by mean-field calculations where the ground or isomeric states were identified by the blocked quasiparticle configuration compatible with the observed spin, parity, and magnetic moment.

4.
Phys Rev Lett ; 127(3): 033001, 2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-34328758

RESUMO

Isotope shifts of ^{223-226,228}Ra^{19}F were measured for different vibrational levels in the electronic transition A^{2}Π_{1/2}←X^{2}Σ^{+}. The observed isotope shifts demonstrate the particularly high sensitivity of radium monofluoride to nuclear size effects, offering a stringent test of models describing the electronic density within the radium nucleus. Ab initio quantum chemical calculations are in excellent agreement with experimental observations. These results highlight some of the unique opportunities that short-lived molecules could offer in nuclear structure and in fundamental symmetry studies.

5.
Phys Rev Lett ; 126(3): 032502, 2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33543945

RESUMO

The mean-square charge radii of ^{207,208}Hg (Z=80, N=127, 128) have been studied for the first time and those of ^{202,203,206}Hg (N=122, 123, 126) remeasured by the application of in-source resonance-ionization laser spectroscopy at ISOLDE (CERN). The characteristic kink in the charge radii at the N=126 neutron shell closure has been revealed, providing the first information on its behavior below the Z=82 proton shell closure. A theoretical analysis has been performed within relativistic Hartree-Bogoliubov and nonrelativistic Hartree-Fock-Bogoliubov approaches, considering both the new mercury results and existing lead data. Contrary to previous interpretations, it is demonstrated that both the kink at N=126 and the odd-even staggering (OES) in its vicinity can be described predominately at the mean-field level and that pairing does not need to play a crucial role in their origin. A new OES mechanism is suggested, related to the staggering in the occupation of the different neutron orbitals in odd- and even-A nuclei, facilitated by particle-vibration coupling for odd-A nuclei.

8.
Nature ; 581(7809): 396-400, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32461650

RESUMO

Molecular spectroscopy offers opportunities for the exploration of the fundamental laws of nature and the search for new particle physics beyond the standard model1-4. Radioactive molecules-in which one or more of the atoms possesses a radioactive nucleus-can contain heavy and deformed nuclei, offering high sensitivity for investigating parity- and time-reversal-violation effects5,6. Radium monofluoride, RaF, is of particular interest because it is predicted to have an electronic structure appropriate for laser cooling6, thus paving the way for its use in high-precision spectroscopic studies. Furthermore, the effects of symmetry-violating nuclear moments are strongly enhanced5,7-9 in molecules containing octupole-deformed radium isotopes10,11. However, the study of RaF has been impeded by the lack of stable isotopes of radium. Here we present an experimental approach to studying short-lived radioactive molecules, which allows us to measure molecules with lifetimes of just tens of milliseconds. Energetically low-lying electronic states were measured for different isotopically pure RaF molecules using collinear resonance ionisation at the ISOLDE ion-beam facility at CERN. Our results provide evidence of the existence of a suitable laser-cooling scheme for these molecules and represent a key step towards high-precision studies in these systems. Our findings will enable further studies of short-lived radioactive molecules for fundamental physics research.

9.
Phys Rev Lett ; 124(4): 042503, 2020 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-32058764

RESUMO

There is sparse direct experimental evidence that atomic nuclei can exhibit stable "pear" shapes arising from strong octupole correlations. In order to investigate the nature of octupole collectivity in radium isotopes, electric octupole (E3) matrix elements have been determined for transitions in ^{222,228}Ra nuclei using the method of sub-barrier, multistep Coulomb excitation. Beams of the radioactive radium isotopes were provided by the HIE-ISOLDE facility at CERN. The observed pattern of E3 matrix elements for different nuclear transitions is explained by describing ^{222}Ra as pear shaped with stable octupole deformation, while ^{228}Ra behaves like an octupole vibrator.

10.
Nat Commun ; 10(1): 2473, 2019 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-31171788

RESUMO

There is a large body of evidence that atomic nuclei can undergo octupole distortion and assume the shape of a pear. This phenomenon is important for measurements of electric-dipole moments of atoms, which would indicate CP violation and hence probe physics beyond the Standard Model of particle physics. Isotopes of both radon and radium have been identified as candidates for such measurements. Here, we observed the low-lying quantum states in 224Rn and 226Rn by accelerating beams of these radioactive nuclei. We show that radon isotopes undergo octupole vibrations but do not possess static pear-shapes in their ground states. We conclude that radon atoms provide less favourable conditions for the enhancement of a measurable atomic electric-dipole moment.

11.
Phys Rev Lett ; 120(23): 232501, 2018 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-29932682

RESUMO

The neutron-rich isotopes ^{58-63}Cr were produced for the first time at the ISOLDE facility and their masses were measured with the ISOLTRAP spectrometer. The new values are up to 300 times more precise than those in the literature and indicate significantly different nuclear structure from the new mass-surface trend. A gradual onset of deformation is found in this proton and neutron midshell region, which is a gateway to the second island of inversion around N=40. In addition to comparisons with density-functional theory and large-scale shell-model calculations, we present predictions from the valence-space formulation of the ab initio in-medium similarity renormalization group, the first such results for open-shell chromium isotopes.

12.
Nat Commun ; 8: 14520, 2017 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-28224987

RESUMO

Resonant laser ionization and spectroscopy are widely used techniques at radioactive ion beam facilities to produce pure beams of exotic nuclei and measure the shape, size, spin and electromagnetic multipole moments of these nuclei. However, in such measurements it is difficult to combine a high efficiency with a high spectral resolution. Here we demonstrate the on-line application of atomic laser ionization spectroscopy in a supersonic gas jet, a technique suited for high-precision studies of the ground- and isomeric-state properties of nuclei located at the extremes of stability. The technique is characterized in a measurement on actinium isotopes around the N=126 neutron shell closure. A significant improvement in the spectral resolution by more than one order of magnitude is achieved in these experiments without loss in efficiency.

13.
Phys Rev Lett ; 115(13): 132501, 2015 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-26451548

RESUMO

New technical developments have led to a 2 orders of magnitude improvement of the resolution of the collinear resonance ionization spectroscopy (CRIS) experiment at ISOLDE, CERN, without sacrificing the high efficiency of the CRIS technique. Experimental linewidths of 20(1) MHz were obtained on radioactive beams of francium, allowing us for the first time to determine the electric quadrupole moment of the short lived [t_{1/2}=22.0(5) ms] ^{219}Fr Q_{s}=-1.21(2) eb, which would not have been possible without the advantages offered by the new method. This method relies on a continuous-wave laser and an external Pockels cell to produce narrow-band light pulses, required to reach the high resolution in two-step resonance ionization. Exotic nuclei produced at rates of a few hundred ions/s can now be studied with high resolution, allowing detailed studies of the anchor points for nuclear theories.

14.
Rev Sci Instrum ; 86(12): 123501, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26724021

RESUMO

An inductively heated hot cavity catcher has been constructed for the production of low-energy ion beams of exotic, neutron-deficient Ag isotopes. A proof-of-principle experiment has been realized by implanting primary (107)Ag(21+) ions from a heavy-ion cyclotron into a graphite catcher. A variable-thickness nickel foil was used to degrade the energy of the primary beam in order to mimic the implantation depth expected from the heavy-ion fusion-evaporation recoils of N = Z (94)Ag. Following implantation, the silver atoms diffused out of the graphite and effused into the catcher cavity and transfer tube, where they were resonantly laser ionized using a three-step excitation and ionization scheme. Following mass separation, the ions were identified by scanning the frequency of the first resonant excitation step while recording the ion count rate. Ion release time profiles were measured for different implantation depths and cavity temperatures with the mean delay time varying from 10 to 600 ms. In addition, the diffusion coefficients for silver in graphite were measured for temperatures of 1470 K, 1630 K, and 1720 K, from which an activation energy of 3.2 ± 0.3 eV could be determined.

15.
Geburtshilfe Frauenheilkd ; 74(3): 284-287, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24882879

RESUMO

A cervical carcinoma was diagnosed in a 32-year-old patient in the 17th week of her pregnancy. The histological confirmation revealed a well-differentiated squamous cell carcinoma. It was a clinical stage Ib1 tumour, without enlarged lymph nodes according to the image. After a staging MRI, intensive education of the patient and case discussion at the interdisciplinary tumour board as well as consultation with the neonatologist, it was agreed to prolong the pregnancy under close monitoring. The carcinoma was confined to the cervix in the further course of the pregnancy. The elective delivery was planned after 32 weeks of gestation. The primary Caesarean section followed by radical hysterectomy Piver II were carried out without complications. After regular postoperative progression of the mother, brachytherapy was performed at the appropriate time. The premature newborn was under neonatal care and exhibited good postnatal adaptation. Mother and child were discharged in good health.

16.
Phys Rev Lett ; 111(21): 212501, 2013 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-24313482

RESUMO

The magnetic moments and isotope shifts of the neutron-deficient francium isotopes (202-205)Fr were measured at ISOLDE-CERN with use of collinear resonance ionization spectroscopy. A production-to-detection efficiency of 1% was measured for (202)Fr. The background from nonresonant and collisional ionization was maintained below one ion in 10(5) beam particles. Through a comparison of the measured charge radii with predictions from the spherical droplet model, it is concluded that the ground-state wave function remains spherical down to (205)Fr, with a departure observed in (203)Fr (N=116).

17.
Nat Commun ; 4: 1835, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23673620

RESUMO

The radioactive element astatine exists only in trace amounts in nature. Its properties can therefore only be explored by study of the minute quantities of artificially produced isotopes or by performing theoretical calculations. One of the most important properties influencing the chemical behaviour is the energy required to remove one electron from the valence shell, referred to as the ionization potential. Here we use laser spectroscopy to probe the optical spectrum of astatine near the ionization threshold. The observed series of Rydberg states enabled the first determination of the ionization potential of the astatine atom, 9.31751(8) eV. New ab initio calculations are performed to support the experimental result. The measured value serves as a benchmark for quantum chemistry calculations of the properties of astatine as well as for the theoretical prediction of the ionization potential of superheavy element 117, the heaviest homologue of astatine.

18.
Rev Sci Instrum ; 83(2): 02A903, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22380244

RESUMO

The resonance ionization laser ion source (RILIS) produces beams for the majority of experiments at the ISOLDE on-line isotope separator. A substantial improvement in RILIS performance has been achieved through a series of upgrade steps: replacement of the copper vapor lasers by a Nd:YAG laser; replacement of the old homemade dye lasers by new commercial dye lasers; installation of a complementary Ti:Sapphire laser system. The combined dye and Ti:Sapphire laser system with harmonics is capable of generating beams at any wavelength in the range of 210-950 nm. In total, isotopes of 31 different elements have been selectively laser-ionized and separated at ISOLDE, including recently developed beams of samarium, praseodymium, polonium, and astatine.

19.
Br J Pharmacol ; 164(2b): 607-16, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21542828

RESUMO

BACKGROUND AND PURPOSE: We investigated the influence of metoprolol on gap junction proteins connexin43 (Cx43) and connexin40 (Cx40) in atrial tissue from patients with/without atrial fibrillation (AF). EXPERIMENTAL APPROACH: Left atrial tissue samples from 160 patients with AF or sinus rhythm (SR) with or without metoprolol (mean daily dose: 65.2 ± 9.1 mg·day⁻¹) were analysed for Cx43 and Cx40 by Western blot and immunohistology. Transverse and longitudinal conduction velocities were determined by 64 multi-electrode mapping. KEY RESULTS: Both Cx43 and Cx40 expression were significantly increased in patients with AF versus SR. Cx43-expression in AF was significantly higher in patients receiving metoprolol, while Cx40 expression was unaffected by metoprolol treatment. In AF, the ratio of lateral/polar expression of Cx43 and Cx40 was enhanced due to increased expression at the sides of the cells (lateral) and a loss at the cell poles. This AF-induced increase in lateral/polar expression of Cx43, but not of Cx40, was significantly antagonized by metoprolol treatment. Functionally, in AF patients, transverse conduction velocity in atrial samples was significantly enhanced and this change was also significantly antagonized by metoprolol. CONCLUSIONS AND IMPLICATIONS: AF induced enhanced lateral expression of Cx43 and Cx40 together with enhanced transverse conduction velocity in left atrial tissue. Alterations in localization of Cx43 and conduction changes were both antagonized by metoprolol, showing that pharmacological modulation of gap junction remodelling seems, in principle, possible. This finding may open new approaches to the development of anti-arrythmic drugs.


Assuntos
Fibrilação Atrial/tratamento farmacológico , Fibrilação Atrial/patologia , Junções Comunicantes/efeitos dos fármacos , Junções Comunicantes/patologia , Metoprolol/farmacologia , Antagonistas de Receptores Adrenérgicos beta 1/farmacologia , Fibrilação Atrial/genética , Fibrilação Atrial/metabolismo , Doença Crônica , Conexina 43/antagonistas & inibidores , Conexina 43/genética , Conexina 43/metabolismo , Conexinas/antagonistas & inibidores , Conexinas/genética , Conexinas/metabolismo , Feminino , Junções Comunicantes/genética , Junções Comunicantes/metabolismo , Átrios do Coração/efeitos dos fármacos , Átrios do Coração/metabolismo , Átrios do Coração/patologia , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Proteína alfa-5 de Junções Comunicantes
20.
Rev Sci Instrum ; 81(2): 02A515, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20192370

RESUMO

The improvement in the performance of a conventional laser ion source in the laser ion source and trap (LIST) project is presented, which envisages installation of a repeller electrode and a linear Paul trap/ion guide structure. This approach promises highest isobaric purity and optimum temporal and spatial control of the radioactive ion beam produced at an online isotope separator facility. The functionality of the LIST was explored at the offline test separators of University of Mainz (UMz) and ISOLDE/CERN, using the UMz solid state laser system. Ionization efficiency and selectivity as well as time structure and transversal emittance of the produced ion beam was determined. Next step after complete characterization is the construction and installation of the radiation-hard final trap structure and its first online application.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...