Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Psychiatry ; 23(3): 621-628, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28607459

RESUMO

Ubiquitously expressed genes have been implicated in a variety of specific behaviors, including responses to ethanol. However, the mechanisms that confer this behavioral specificity have remained elusive. Previously, we showed that the ubiquitously expressed small GTPase Arf6 is required for normal ethanol-induced sedation in adult Drosophila. Here, we show that this behavioral response also requires Efa6, one of (at least) three Drosophila Arf6 guanine exchange factors. Ethanol-naive Arf6 and Efa6 mutants were sensitive to ethanol-induced sedation and lacked rapid tolerance upon re-exposure to ethanol, when compared with wild-type flies. In contrast to wild-type flies, both Arf6 and Efa6 mutants preferred alcohol-containing food without prior ethanol experience. An analysis of the human ortholog of Arf6 and orthologs of Efa6 (PSD1-4) revealed that the minor G allele of single nucleotide polymorphism (SNP) rs13265422 in PSD3, as well as a haplotype containing rs13265422, was associated with an increased frequency of drinking and binge drinking episodes in adolescents. The same haplotype was also associated with increased alcohol dependence in an independent European cohort. Unlike the ubiquitously expressed human Arf6 GTPase, PSD3 localization is restricted to the brain, particularly the prefrontal cortex (PFC). Functional magnetic resonance imaging revealed that the same PSD3 haplotype was also associated with a differential functional magnetic resonance imaging signal in the PFC during a Go/No-Go task, which engages PFC-mediated executive control. Our translational analysis, therefore, suggests that PSD3 confers regional specificity to ubiquitous Arf6 in the PFC to modulate human alcohol-drinking behaviors.


Assuntos
Consumo de Bebidas Alcoólicas/genética , Consumo de Bebidas Alcoólicas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Fator 6 de Ribosilação do ADP , Fatores de Ribosilação do ADP/metabolismo , Animais , Drosophila , Proteínas de Drosophila/metabolismo , Etanol/metabolismo , Etanol/farmacologia , Fatores de Troca do Nucleotídeo Guanina/genética , Humanos , Masculino , Proteínas do Tecido Nervoso/genética
2.
Cell Death Differ ; 19(10): 1655-63, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22539005

RESUMO

Heavy alcohol consumption provokes an array of degenerative pathologies but the signals that couple alcohol exposure to regulated forms of cell death are poorly understood. Using Drosophila as a model, we genetically establish that the severity of ethanol challenge dictates the type of death that occurs. In contrast to responses seen under acute exposure, cytotoxic responses to milder challenges required gene encoding components of the apoptosome, Dronc and Dark. We conducted a genome-wide RNAi screen to capture targets that specifically mediate ethanol-induced cell death. One effector, Drat, encodes a novel protein that contains an ADH domain but lacks essential residues in the catalytic site. In cultured cells and neurons in vivo, depletion of Drat conferred protection from alcohol-induced apoptosis. Adults mutated for Drat showed both improved survival and enhanced propensities toward sedation after alcohol challenge. Together, these findings highlight novel effectors that support regulated cell death incited by alcohol stress in vitro and in vivo.


Assuntos
Drosophila/efeitos dos fármacos , Etanol/toxicidade , ADP Ribose Transferases/antagonistas & inibidores , ADP Ribose Transferases/genética , ADP Ribose Transferases/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptossomas/antagonistas & inibidores , Apoptossomas/genética , Apoptossomas/metabolismo , Caspases/metabolismo , Células Cultivadas , Drosophila/metabolismo , Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Neurônios/metabolismo , Interferência de RNA
3.
Neuron ; 30(3): 699-706, 2001 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-11430804

RESUMO

The clock gene double-time (dbt) encodes an ortholog of casein kinase Iepsilon that promotes phosphorylation and turnover of the PERIOD protein. Whereas the period (per), timeless (tim), and dClock (dClk) genes of Drosophila each contribute cycling mRNA and protein to a circadian clock, dbt RNA and DBT protein are constitutively expressed. Robust circadian changes in DBT subcellular localization are nevertheless observed in clock-containing cells of the fly head. These localization rhythms accompany formation of protein complexes that include PER, TIM, and DBT, and reflect periodic redistribution between the nucleus and the cytoplasm. Nuclear phosphorylation of PER is strongly enhanced when TIM is removed from PER/TIM/DBT complexes. The varying associations of PER, DBT and TIM appear to determine the onset and duration of nuclear PER function within the Drosophila clock.


Assuntos
Caseína Quinase 1 épsilon , Ritmo Circadiano/fisiologia , Proteínas de Drosophila , Proteínas de Insetos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Quinases/metabolismo , Animais , Núcleo Celular/metabolismo , Drosophila , Proteínas Circadianas Period , Fosforilação
4.
Curr Biol ; 10(21): 1399-402, 2000 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-11084344

RESUMO

Circadian (24 hour) PERIOD (PER) protein oscillation is dependent on the double-time (dbt) gene, a casein kinase Ivarepsilon homolog [1-3]. Without dbt activity, hypophosphorylated PER proteins over-accumulate, indicating that dbt is required for PER phosphorylation and turnover [3,4]. There is evidence of a similar role for casein kinase Ivarepsilon in the mammalian circadian clock [5,6]. We have isolated a new dbt allele, dbt(ar), which causes arrhythmic locomotor activity in homozygous viable adults, as well as molecular arrhythmicity, with constitutively high levels of PER proteins, and low levels of TIMELESS (TIM) proteins. Short-period mutations of per, but not of tim, restore rhythmicity to dbt(ar) flies. This suppression is accompanied by a restoration of PER protein oscillations. Our results suggest that short-period per mutations, and mutations of dbt, affect the same molecular step that controls nuclear PER turnover. We conclude that, in wild-type flies, the previously defined PER'short domain' [7,8] may regulate the activity of DBT on PER.


Assuntos
Caseína Quinase 1 épsilon , Ritmo Circadiano , Proteínas de Drosophila , Drosophila melanogaster/fisiologia , Proteínas Nucleares/metabolismo , Proteínas Quinases/genética , Sequência de Aminoácidos , Animais , Western Blotting , Genótipo , Proteínas de Insetos/metabolismo , Atividade Motora , Mutação , Proteínas Nucleares/genética , Proteínas Circadianas Period , Fosforilação , Células Fotorreceptoras de Invertebrados/metabolismo , Proteínas Quinases/metabolismo
5.
Genetics ; 156(2): 665-75, 2000 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-11014814

RESUMO

In genetic screens for Drosophila mutations affecting circadian locomotion rhythms, we have isolated six new alleles of the timeless (tim) gene. Two of these mutations cause short-period rhythms of 21-22 hr in constant darkness, and four result in long-period cycles of 26-28 hr. All alleles are semidominant. Studies of the genetic interactions of some of the tim alleles with period-altering period (per) mutations indicate that these interactions are close to multiplicative; a given allele changes the period length of the genetic background by a fixed percentage, rather than by a fixed number of hours. The tim(L1) allele was studied in molecular detail. The long behavioral period of tim(L1) is reflected in a lengthened molecular oscillation of per and tim RNA and protein levels. The lengthened period is partly caused by delayed nuclear translocation of TIM(L1) protein, shown directly by immunocytochemistry and indirectly by an analysis of the phase response curve of tim(L1) flies.


Assuntos
Ritmo Circadiano/genética , Proteínas de Drosophila , Drosophila melanogaster/genética , Proteínas de Insetos/genética , Alelos , Animais , Cruzamentos Genéticos , Drosophila melanogaster/fisiologia , Feminino , Regulação da Expressão Gênica , Masculino , Atividade Motora/genética , Atividade Motora/fisiologia , Mutagênese , Proteínas Nucleares/genética , Proteínas Circadianas Period , Transcrição Gênica
6.
Neuron ; 26(2): 505-14, 2000 May.
Artigo em Inglês | MEDLINE | ID: mdl-10839368

RESUMO

The mutation timeless(UL) generates 33 hr rhythms, prolonged nuclear localization of PERIOD/TIMELESS(UL) protein complexes, and protracted derepression of period (per) and timeless (tim) transcription. Light-induced elimination of TIM(UL) from nuclear PER/TIM(UL) complexes gives strong downregulation of per and tim expression. Thus, in the absence of TIM, nuclear PER can function as a potent negative transcriptional regulator. Two additional studies support this role for PER: (1) Drosophila expressing PER that constitutively localizes to nuclei produce dominant behavioral arrhythmicity, and (2) constitutively nuclear PER represses dCLOCK/CYCLE-mediated transcription of per in cultured cells without TIM. Conversion of PER/TIM heterodimers to nuclear PER proteins appears to be required to complete transcriptional repression and terminate each circadian molecular cycle.


Assuntos
Relógios Biológicos/fisiologia , Proteínas de Drosophila , Drosophila/fisiologia , Proteínas de Insetos/fisiologia , Proteínas Nucleares/fisiologia , Animais , Linhagem Celular , Núcleo Celular/metabolismo , Ritmo Circadiano/fisiologia , Deleção de Genes , Proteínas de Insetos/genética , Proteínas de Insetos/isolamento & purificação , Proteínas de Insetos/metabolismo , Mutação/fisiologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Circadianas Period , Transcrição Gênica/fisiologia
8.
Cell ; 94(1): 83-95, 1998 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-9674430

RESUMO

We have isolated three alleles of a novel Drosophila clock gene, double-time (dbt). Short- (dbtS) and long-period (dbtL) mutants alter both behavioral rhythmicity and molecular oscillations from previously identified clock genes, period and timeless. A third allele, dbtP, causes pupal lethality and eliminates circadian cycling of per and tim gene products in larvae. In dbtP mutants, PER proteins constitutively accumulate, remain hypophosphorylated, and no longer depend on TIM proteins for their accumulation. We propose that the normal function of DOUBLETIME protein is to reduce the stability and thus the level of accumulation of monomeric PER proteins. This would promote a delay between per/tim transcription and PER/TIM complex function, which is essential for molecular rhythmicity.


Assuntos
Relógios Biológicos/genética , Ritmo Circadiano/genética , Proteínas de Drosophila , Drosophila/genética , Genes de Insetos , Proteínas de Insetos/genética , Proteínas Nucleares/biossíntese , Alelos , Animais , Encéfalo/metabolismo , Elementos de DNA Transponíveis , Escuridão , Drosophila/citologia , Regulação da Expressão Gênica , Proteínas de Insetos/biossíntese , Proteínas de Insetos/metabolismo , Larva , Luz , Mutagênese , Proteínas Circadianas Period , RNA Mensageiro/biossíntese
9.
Cell ; 94(1): 97-107, 1998 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-9674431

RESUMO

The cloning of double-time (dbt) is reported. DOUBLETIME protein (DBT) is most closely related to human casein kinase Iepsilon. dbtS and dbtL mutations, which alter period length of Drosophila circadian rhythms, produce single amino acid changes in conserved regions of the predicted kinase. dbtP mutants, which eliminate rhythms of per and tim expression and constitutively overproduce hypophosphorylated PER proteins, abolish most dbt expression. dbt mRNA appears to be expressed in the same cell types as are per and tim and shows no evident oscillation in wild-type heads. DBT is capable of binding to PER in vitro and in Drosophila cells, suggesting that a physical association of PER and DBT regulates PER phosphorylation and accumulation in vivo.


Assuntos
Relógios Biológicos/genética , Caseína Quinase 1 épsilon , Proteínas de Drosophila , Drosophila/genética , Genes de Insetos , Proteínas Quinases/genética , Sequência de Aminoácidos , Animais , Caseína Quinases , Sequência Conservada , Regulação da Expressão Gênica , Genes Letais , Hibridização In Situ , Proteínas de Insetos/metabolismo , Modelos Biológicos , Dados de Sequência Molecular , Mutação , Proteínas Nucleares/metabolismo , Proteínas Circadianas Period , Fosforilação , Ligação Proteica , Homologia de Sequência de Aminoácidos , Fatores de Tempo , Distribuição Tecidual
10.
Nucleic Acids Res ; 25(23): 4710-4, 1997 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-9365248

RESUMO

Two proteins, TIM and PER, physically interact to control circadian cycles of tim and per transcription in Drosophila melanogaster. In the present study the structure of TIM protein expressed by D. virilis was determined by isolation and sequence analysis of genomic DNA (gDNA) corresponding to the D. virilis tim locus (v tim ). Comparison of v tim and m tim gDNA revealed high conservation of the TIM protein. This contrasts with poor sequence conservation previously observed for the TIM partner protein PER in these species. Inspection of the v tim sequence suggests an alternative structure for most TIM proteins. Sequences forming an intron in a previously characterized D. melanogaster tim cDNA appear to be most often translated to produce a longer TIM protein in both species. The N-terminal sequence of vTIM and sequence analysis of genomic DNA from several strains of D. melanogaster suggest that only one of two possible translation initiation sites found in tim mRNA is sufficient to generate circadian rhythms in D. melanogaster. TIM translation may be affected by multiple AUG codons that appear to have been conserved in sequences composing the 5'-untranslated tim mRNA leader.


Assuntos
Proteínas de Drosophila , Proteínas de Insetos/química , Sequência de Aminoácidos , Animais , Sequência de Bases , Relógios Biológicos , Ritmo Circadiano , Códon de Iniciação , DNA , Drosophila , Drosophila melanogaster , Proteínas de Insetos/genética , Dados de Sequência Molecular , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Circadianas Period , Mapeamento por Restrição , Alinhamento de Sequência
11.
J Biol Chem ; 266(17): 10739-42, 1991 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-2040593

RESUMO

Cyclophilin is an abundant and ubiquitous cytosolic protein that is conserved throughout evolution from man to bacteria. It is the target of the immunosuppressive drug cyclosporin A. Cyclophilin has peptidyl-prolyl cis/trans-isomerase activity, and it accelerates protein folding in vitro, suggesting that it might be involved in the folding of cytosolic proteins. We describe a novel cyclophilin-like protein, S-cyclophilin, in the chick. Analysis of S-cyclophilin cDNA revealed the presence of a signal sequence followed by an open reading frame coding for a protein very similar to cytosolic cyclophilin, except for the presence of unique additional short amino acid segments at the N and C termini of the protein. S-Cyclophilin mRNA was abundant and present in all embryonic chick tissues tested. Cyclophilin and S-cyclophilin are coded by separate genes in the chick genome. Recombinant S-cyclophilin was expressed in insect cells by means of the baculovirus system. Pulse-chase experiments revealed that a significant fraction of newly synthesized recombinant S-cyclophilin was rapidly secreted into the culture medium. Our findings indicate that cyclophilins are associated with most if not all intra- and extracellular compartments and suggest that enzyme-assisted conformational conversions in proteins might also take place in post-endoplasmic reticulum compartments, possibly including the extracellular space.


Assuntos
Isomerases de Aminoácido/genética , Proteínas de Transporte/genética , Isomerases de Aminoácido/biossíntese , Isomerases de Aminoácido/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Proteínas de Transporte/biossíntese , Proteínas de Transporte/metabolismo , Linhagem Celular , Embrião de Galinha , Clonagem Molecular , Ciclosporinas/metabolismo , DNA/genética , DNA/isolamento & purificação , Biblioteca Gênica , Insetos , Dados de Sequência Molecular , Fases de Leitura Aberta , Peptidilprolil Isomerase , Sinais Direcionadores de Proteínas/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/metabolismo , Medula Espinal/fisiologia , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...