Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Comput Assist Radiol Surg ; 18(2): 195-204, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36088614

RESUMO

PURPOSE: Integrating fleets of mobile service robots into the operating room wing (OR wing) has the potential to help overcome staff shortages and reduce the amount of dull or unhealthy tasks for humans. However, the OR wing has been little studied in this regard and the requirements for realizing this vision have not yet been fully identified. This includes fundamental aspects such as fleet size and composition, which we have now studied comprehensively for the first time. METHODS: Using simulation, 150 different scenarios with varying fleet compositions, robot speeds and workloads were studied for a setup based on a real-life OR wing. The simulation included battery recharging cycles and queueing due to shared resources. RESULTS: For all simulated scenarios we report results regarding total duration of execution, average task response times and fleet utilization. The relationship between these performance measures and global scenario parameters-such as fleet size, fleet composition, robot velocity and the number of operating rooms to be served-is visualized. CONCLUSION: Our simulation-based studies have proven to be a valuable tool for individualized dimensioning of mobile robotic fleets, based on realistic workflows and environmental models. Thereby, important implications for future developments of mobile robots have been identified and a basis of decision-making regarding fleet size, fleet composition, robot capabilities and robot velocities can be provided. Due to costs, space limitations and safety requirements, these aspects must be carefully considered to successfully integrate mobile robotic technology into real-world OR wing environments.


Assuntos
Procedimentos Cirúrgicos Robóticos , Robótica , Animais , Humanos , Robótica/métodos , Salas Cirúrgicas , Software , Simulação por Computador
2.
Int J Comput Assist Radiol Surg ; 17(4): 719-729, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35195830

RESUMO

PURPOSE: In current clinical practice, intraoperative repositioning of mobile C-arms is challenging due to a lack of visual cues and efficient guiding tools. This can be detrimental to the surgical workflow and lead to additional radiation burdens for both patient and personnel. To overcome this problem, we present our novel approach Lidar-based X-ray Positioning for Mobile C-arms (RAY-POS) for assisting circulating nurses during intraoperative C-arm repositioning without requiring external aids. METHODS: RAY-POS consists of a localization module and a graphical user interface for guiding the user back to a previously recorded C-Arm position. We conducted a systematic comparison of simultaneous localization and mapping (SLAM) algorithms using different attachment positions of light detection and ranging (LIDAR) sensors to benchmark localization performance within the operating room (OR). For two promising combinations, we conducted further end-to-end repositioning tests within a realistic OR setup. RESULTS: SLAM algorithm gmapping with a LIDAR sensor mounted 40 cm above the C-arm's horizontal unit performed best regarding localization accuracy and long-term stability. The distribution of the repositioning error yielded an effective standard deviation of 7.61 mm. CONCLUSION: We conclude that a proof-of-concept for LIDAR-based C-arm repositioning without external aids has been achieved. In future work, we mainly aim at extending the capabilities of our system and evaluating the usability together with clinicians.


Assuntos
Algoritmos , Reposicionamento de Medicamentos , Humanos , Radiografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...