Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Cell Oncol (Dordr) ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38819630

RESUMO

PURPOSE: Tumor heterogeneity complicates patient treatment and can be due to transitioning of cancer cells across phenotypic cell states. This process is associated with the acquisition of independence from an oncogenic driver, such as the estrogen receptor (ER) in breast cancer (BC), resulting in tumor progression, therapeutic failure and metastatic spread. The transcription factor ONECUT2 (OC2) has been shown to be a master regulator protein of metastatic castration-resistant prostate cancer (mCRPC) tumors that promotes lineage plasticity to a drug-resistant neuroendocrine (NEPC) phenotype. Here, we investigate the role of OC2 in the dynamic conversion between different molecular subtypes in BC. METHODS: We analyze OC2 expression and clinical significance in BC using public databases and immunohistochemical staining. In vitro, we perform RNA-Seq, RT-qPCR and western-blot after OC2 enforced expression. We also assess cellular effects of OC2 silencing and inhibition with a drug-like small molecule in vitro and in vivo. RESULTS: OC2 is highly expressed in a substantial subset of hormone receptor negative human BC tumors and tamoxifen-resistant models, and is associated with poor clinical outcome, lymph node metastasis and heightened clinical stage. OC2 inhibits ER expression and activity, suppresses a gene expression program associated with luminal differentiation and activates a basal-like state at the gene expression level. We also show that OC2 is required for cell growth and survival in metastatic BC models and that it can be targeted with a small molecule inhibitor providing a novel therapeutic strategy for patients with OC2 active tumors. CONCLUSIONS: The transcription factor OC2 is a driver of BC heterogeneity and a potential drug target in distinct cell states within the breast tumors.

2.
bioRxiv ; 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37905039

RESUMO

Androgen receptor- (AR-) indifference is a mechanism of resistance to hormonal therapy in prostate cancer (PC). Here we demonstrate that the HOX/CUT transcription factor ONECUT2 (OC2) activates resistance through multiple drivers associated with adenocarcinoma, stem-like and neuroendocrine (NE) variants. Direct OC2 targets include the glucocorticoid receptor and the NE splicing factor SRRM4, among others. OC2 regulates gene expression by promoter binding, enhancement of chromatin accessibility, and formation of novel super-enhancers. OC2 also activates glucuronidation genes that irreversibly disable androgen, thereby evoking phenotypic heterogeneity indirectly by hormone depletion. Pharmacologic inhibition of OC2 suppresses lineage plasticity reprogramming induced by the AR signaling inhibitor enzalutamide. These results demonstrate that OC2 activation promotes a range of drug resistance mechanisms associated with treatment-emergent lineage variation in PC. Our findings support enhanced efforts to therapeutically target this protein as a means of suppressing treatment-resistant disease.

3.
Int J Mol Sci ; 24(18)2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37761978

RESUMO

Neuroendocrine prostate cancer (NEPC) is a highly aggressive subtype of prostate cancer (PC) that commonly emerges through a transdifferentiation process from prostate adenocarcinoma and evades conventional therapies. Extensive molecular research has revealed factors that drive lineage plasticity, uncovering novel therapeutic targets to be explored. A diverse array of targeting agents is currently under evaluation in pre-clinical and clinical studies with promising results in suppressing or reversing the neuroendocrine phenotype and inhibiting tumor growth and metastasis. This new knowledge has the potential to contribute to the development of novel therapeutic approaches that may enhance the clinical management and prognosis of this lethal disease. In the present review, we discuss molecular players involved in the neuroendocrine phenotype, and we explore therapeutic strategies that are currently under investigation for NEPC.


Assuntos
Carcinoma Neuroendócrino , Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Fenótipo , Carcinoma Neuroendócrino/patologia , Linhagem Celular Tumoral
4.
Int J Mol Sci ; 25(1)2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38203275

RESUMO

Small cell lung cancer (SCLC) stands out as the most aggressive form of lung cancer, characterized by an extremely high proliferation rate and a very poor prognosis, with a 5-year survival rate that falls below 7%. Approximately two-thirds of patients receive their diagnosis when the disease has already reached a metastatic or extensive stage, leaving chemotherapy as the remaining first-line treatment option. Other than the recent advances in immunotherapy, which have shown moderate results, SCLC patients cannot yet benefit from any approved targeted therapy, meaning that this cancer remains treated as a uniform entity, disregarding intra- or inter-tumoral heterogeneity. Continuous efforts and technological improvements have enabled the identification of new potential targets that could be used to implement novel therapeutic strategies. In this review, we provide an overview of the most recent approaches for SCLC treatment, providing an extensive compilation of the targeted therapies that are currently under clinical evaluation and inhibitor molecules with promising results in vitro and in vivo.


Assuntos
Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Humanos , Carcinoma de Pequenas Células do Pulmão/terapia , Neoplasias Pulmonares/tratamento farmacológico , Imunoterapia , Agressão , Tecnologia
5.
Am J Clin Exp Urol ; 9(4): 337-349, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34541032

RESUMO

The nuclear matrix protein Scaffold Attachment Factor B1 (SAFB1, SAFB) can act in prostate cancer (PCa) as an androgen receptor (AR) co-repressor that functions through epigenetic silencing of AR targets, such as prostate specific antigen (PSA, KLK3). Genomic profiling of SAFB1-silenced PCa cells indicated that SAFB1 may play a role in modulating intracrine androgen levels through the regulation of UDP-glucuronosyltransferase (UGT) genes, which inactivate steroid hormones. Gene silencing of SAFB1 resulted in increased levels of free dihydrotesterosterone (DHT), and increased resistance to the AR inhibitor enzalutamide. SAFB1 silencing suppressed expression of the UDP-glucuronosyltransferase family 2 member B15 gene (UGT2B15) and the closely related UGT2B17 gene, which encode proteins that irreversibly inactivate testosterone (T) and DHT. Analysis of human data indicated that genomic loss at the SAFB locus, or down-regulation of expression of the SAFB gene, is associated with aggressive PCa. These findings identify SAFB1 as an important regulator of androgen catabolism in PCa and suggest that loss or inactivation of this protein may promote AR activity by retention of active androgen in tumor cells.

8.
Mol Cancer Res ; 18(5): 671-684, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32019810

RESUMO

We recently reported that restoring the CYP27A1-27hydroxycholesterol axis had antitumor properties. Thus, we sought to determine the mechanism by which 27HC exerts its anti-prostate cancer effects. As cholesterol is a major component of membrane microdomains known as lipid rafts, which localize receptors and facilitate cellular signaling, we hypothesized 27HC would impair lipid rafts, using the IL6-JAK-STAT3 axis as a model given its prominent role in prostate cancer. As revealed by single molecule imaging of DU145 prostate cancer cells, 27HC treatment significantly reduced detected cholesterol density on the plasma membranes. Further, 27HC treatment of constitutively active STAT3 DU145 prostate cancer cells reduced STAT3 activation and slowed tumor growth in vitro and in vivo. 27HC also blocked IL6-mediated STAT3 phosphorylation in nonconstitutively active STAT3 cells. Mechanistically, 27HC reduced STAT3 homodimerization, nuclear translocation, and decreased STAT3 DNA occupancy at target gene promoters. Combined treatment with 27HC and STAT3 targeting molecules had additive and synergistic effects on proliferation and migration, respectively. Hallmark IL6-JAK-STAT gene signatures positively correlated with CYP27A1 gene expression in a large set of human metastatic castrate-resistant prostate cancers and in an aggressive prostate cancer subtype. This suggests STAT3 activation may be a resistance mechanism for aggressive prostate cancers that retain CYP27A1 expression. In summary, our study establishes a key mechanism by which 27HC inhibits prostate cancer by disrupting lipid rafts and blocking STAT3 activation. IMPLICATIONS: Collectively, these data show that modulation of intracellular cholesterol by 27HC can inhibit IL6-JAK-STAT signaling and may synergize with STAT3-targeted compounds.


Assuntos
Colesterol/metabolismo , Hidroxicolesteróis/farmacologia , Interleucina-6/antagonistas & inibidores , Janus Quinase 1/antagonistas & inibidores , Microdomínios da Membrana/patologia , Neoplasias da Próstata/patologia , Fator de Transcrição STAT3/antagonistas & inibidores , Animais , Apoptose , Biomarcadores Tumorais/metabolismo , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Microdomínios da Membrana/efeitos dos fármacos , Microdomínios da Membrana/metabolismo , Camundongos , Camundongos SCID , Prognóstico , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Clin Exp Metastasis ; 36(2): 119-137, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30673912

RESUMO

The Metastasis Research Society (MRS) 17th Biennial conference on metastasis was held on the 1st to the 5th of August 2018 at Princeton University, NJ, USA. The meeting was held around themes addressing notable aspects of the understanding and treatment of metastasis and metastatic disease covering basic, translational, and clinical research. Importantly, the meeting was largely supported by our patient advocate partners including Susan G. Komen for the Cure, Theresa's Research Foundation and METAvivor. There were a total of 85 presentations from invited and selected speakers spread across the main congress and presentations from the preceding Young Investigator Satellite Meeting. Presentations are summarized in this report by session topic.


Assuntos
Metástase Neoplásica , Animais , Humanos
11.
Nat Med ; 24(12): 1887-1898, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30478421

RESUMO

Treatment of prostate cancer (PC) by androgen suppression promotes the emergence of aggressive variants that are androgen receptor (AR) independent. Here we identify the transcription factor ONECUT2 (OC2) as a master regulator of AR networks in metastatic castration-resistant prostate cancer (mCRPC). OC2 acts as a survival factor in mCRPC models, suppresses the AR transcriptional program by direct regulation of AR target genes and the AR licensing factor FOXA1, and activates genes associated with neural differentiation and progression to lethal disease. OC2 appears active in a substantial subset of human prostate adenocarcinoma and neuroendocrine tumors. Inhibition of OC2 by a newly identified small molecule suppresses metastasis in mice. These findings suggest that OC2 displaces AR-dependent growth and survival mechanisms in many cases where AR remains expressed, but where its activity is bypassed. OC2 is also a potential drug target in the metastatic phase of aggressive PC.


Assuntos
Adenocarcinoma/tratamento farmacológico , Fator 3-alfa Nuclear de Hepatócito/genética , Proteínas de Homeodomínio/genética , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Receptores Androgênicos/genética , Fatores de Transcrição/genética , Adenocarcinoma/genética , Adenocarcinoma/patologia , Androgênios/genética , Androgênios/metabolismo , Animais , Linhagem Celular Tumoral , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteínas de Homeodomínio/antagonistas & inibidores , Humanos , Masculino , Camundongos , Tumores Neuroendócrinos/genética , Tumores Neuroendócrinos/patologia , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/patologia , Transdução de Sinais , Fatores de Transcrição/antagonistas & inibidores , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Cancer Res ; 78(21): 6086-6097, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30154147

RESUMO

Abnormalities in nuclear shape are a well-known feature of cancer, but their contribution to malignant progression remains poorly understood. Here, we show that depletion of the cytoskeletal regulator, Diaphanous-related formin 3 (DIAPH3), or the nuclear membrane-associated proteins, lamin A/C, in prostate and breast cancer cells, induces nuclear shape instability, with a corresponding gain in malignant properties, including secretion of extracellular vesicles that contain genomic material. This transformation is characterized by a reduction and/or mislocalization of the inner nuclear membrane protein, emerin. Consistent with this, depletion of emerin evokes nuclear shape instability and promotes metastasis. By visualizing emerin localization, evidence for nuclear shape instability was observed in cultured tumor cells, in experimental models of prostate cancer, in human prostate cancer tissues, and in circulating tumor cells from patients with metastatic disease. Quantitation of emerin mislocalization discriminated cancer from benign tissue and correlated with disease progression in a prostate cancer cohort. Taken together, these results identify emerin as a mediator of nuclear shape stability in cancer and show that destabilization of emerin can promote metastasis.Significance: This study identifies a novel mechanism integrating the control of nuclear structure with the metastatic phenotype, and our inclusion of two types of human specimens (cancer tissues and circulating tumor cells) demonstrates direct relevance to human cancer.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/78/21/6086/F1.large.jpg Cancer Res; 78(21); 6086-97. ©2018 AACR.


Assuntos
Núcleo Celular/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteínas de Membrana/metabolismo , Metástase Neoplásica , Proteínas Nucleares/metabolismo , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Animais , Apoptose , Biomarcadores Tumorais , Linhagem Celular Tumoral , Movimento Celular , Progressão da Doença , Humanos , Masculino , Camundongos , Camundongos SCID , Invasividade Neoplásica , Células Neoplásicas Circulantes , Membrana Nuclear
13.
PLoS One ; 8(5): e62771, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23650528

RESUMO

To determine the effect of retinoic acid (RA) in neuroblastoma we treated RA sensitive neuroblastoma cell lines with 9-cis RA or ATRA for 9 days, or for 5 days followed by absence of RA for another 4 days. Both isomers induced apoptosis and reduced cell density as a result of cell differentiation and/or apoptosis. Flow cytometry revealed that 9-cis RA induced apoptosis more effectively than ATRA. The expression profile of apoptosis and survival pathways was cell line specific and depended on the isomer used.


Assuntos
Antineoplásicos/farmacologia , Apoptose/genética , Transcriptoma/efeitos dos fármacos , Tretinoína/farmacologia , Alitretinoína , Linhagem Celular Tumoral , Forma Celular/efeitos dos fármacos , Sobrevivência Celular , Resistencia a Medicamentos Antineoplásicos , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neuroblastoma
14.
Am J Pathol ; 181(5): 1573-84, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23022210

RESUMO

Oncosomes are tumor-derived microvesicles that transmit signaling complexes between cell and tissue compartments. Herein, we show that amoeboid tumor cells export large (1- to 10-µm diameter) vesicles, derived from bulky cellular protrusions, that contain metalloproteinases, RNA, caveolin-1, and the GTPase ADP-ribosylation factor 6, and are biologically active toward tumor cells, endothelial cells, and fibroblasts. We describe methods by which large oncosomes can be selectively sorted by flow cytometry and analyzed independently of vesicles <1 µm. Structures resembling large oncosomes were identified in the circulation of different mouse models of prostate cancer, and their abundance correlated with tumor progression. Similar large vesicles were also identified in human tumor tissues, but they were not detected in the benign compartment. They were more abundant in metastases. Our results suggest that tumor microvesicles substantially larger than exosome-sized particles can be visualized and quantified in tissues and in the circulation, and isolated and characterized using clinically adaptable methods. These findings also suggest a mechanism by which migrating tumor cells condition the tumor microenvironment and distant sites, thereby potentiating advanced disease.


Assuntos
Micropartículas Derivadas de Células/patologia , Neoplasias da Próstata/sangue , Neoplasias da Próstata/patologia , Fator 6 de Ribosilação do ADP , Animais , Caveolina 1/metabolismo , Linhagem Celular Tumoral , Micropartículas Derivadas de Células/ultraestrutura , Citometria de Fluxo , Humanos , Masculino , Camundongos , Modelos Biológicos , Invasividade Neoplásica , Metástase Neoplásica , Neoplasias da Próstata/ultraestrutura
15.
J. physiol. biochem ; 68(3): 461-473, sept. 2012.
Artigo em Inglês | IBECS | ID: ibc-122334

RESUMO

Increased intracelullar hormone concentration levels have been shown to be the cause of several endocrine-related cancers including breast, prostate, endometrial, ovarian, cervix, testicular, thyroid, and osteosarcoma. Deregulated expression of steroidogenic enzymes in these tumors seems to be the source of a positive balance in active steroids that bind to the corresponding nuclear receptor, thus ultimately stimulating cell proliferation. Among these enzymes, 17 Beta-hydroxysteroid (..) (AU)


Assuntos
Humanos , Neoplasias das Glândulas Endócrinas/patologia , 17-Hidroxiesteroide Desidrogenases , Proliferação de Células
16.
J Physiol Biochem ; 68(3): 461-73, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22374586

RESUMO

Increased intracelullar hormone concentration levels have been shown to be the cause of several endocrine-related cancers including breast, prostate, endometrial, ovarian, cervix, testicular, thyroid, and osteosarcoma. Deregulated expression of steroidogenic enzymes in these tumors seems to be the source of a positive balance in active steroids that bind to the corresponding nuclear receptor, thus ultimately stimulating cell proliferation. Among these enzymes, 17ß-hydroxysteroid dehydrogenases catalyze the interconversion between 17-ketosteroids and 17-hydroxysteroids on the last steps of sex hormones biosynthesis and metabolism. To date, 14 isoforms have been identified in vertebrates although only 13 are present in humans. Development and clinical evaluation of specific inhibitors to block their activity is currently under progress especially against the best characterized members 1 to 5. Selectivity and potency of these drugs constitute the main challenge in this new approach to cancer and steroid-dependent diseases treatment at the "pre-receptor level". Here we review the current state of knowledge regarding the deregulation of the expression of some of these enzymes in endocrine-related tumors.


Assuntos
17-Hidroxiesteroide Desidrogenases/genética , Neoplasias/enzimologia , Receptores de Esteroides/metabolismo , 17-Hidroxiesteroide Desidrogenases/metabolismo , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/enzimologia , Neoplasias da Mama/metabolismo , Proliferação de Células , Feminino , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Masculino , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo
17.
Mol Cell Endocrinol ; 339(1-2): 45-53, 2011 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-21549806

RESUMO

Type 11 hydroxysteroid (17-beta) dehydrogenase (HSD17B11) catalyzes the conversion of 5α-androstan-3α,17ß-diol into androsterone suggesting that it may play an important role in androgen metabolism. We previously described that overexpression of C/EBPα or C/EBPß induced HSD17B11 expression in HepG2 cells but this process was not mediated by the CCAAT boxes located within its proximal promoter region. Here, we study HSD17B11 transcriptional regulation in prostate cancer (PC) cells. Transfection experiments showed that the region -107/+18 is sufficient for promoter activity in PC cells. Mutagenesis analysis indicated that Sp1 and C/EBP binding sites found in this region are essential for promoter activity. Additional experiments demonstrated that ectopic expression of Sp1 and C/EBPα upregulated HSD17B11 expression only in PC cell lines. Through DAPA and ChIP assays, specific recruitment of Sp1 and C/EBPα to the HSD17B11 promoter was detected. These results show that HSD17B11 transcription in PC cells is regulated by Sp1 and C/EBPα.


Assuntos
17-Hidroxiesteroide Desidrogenases/genética , Aldeído Oxirredutases/genética , Regulação Neoplásica da Expressão Gênica , 17-Hidroxiesteroide Desidrogenases/metabolismo , Regiões 5' não Traduzidas/genética , Aldeído Oxirredutases/metabolismo , Sequência de Bases , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Linhagem Celular Tumoral , Genes Reporter , Humanos , Luciferases de Renilla/biossíntese , Luciferases de Renilla/genética , Masculino , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Neoplasias da Próstata , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Fator de Transcrição Sp1/genética , Fator de Transcrição Sp1/metabolismo , Ativação Transcricional , Regulação para Cima/genética
18.
J Steroid Biochem Mol Biol ; 122(4): 164-71, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20638476

RESUMO

17ß-hydroxysteroid dehydrogenases (HSD17Bs) are enzymes that stereospecifically reduce or oxidize a keto- or hydroxy group at C17 of the steroid scaffold, respectively. Fourteen mammalian HSD17Bs have been identified so far. We previously described that the HSD17B8 gene is regulated by C/EBPß in the hepatocarcinoma cell line HepG2. Here, we analyze the 5'-flanking region of 14 promoters (HSD17B1-14) looking for CCAAT boxes and binding sites for CCAAT enhancer binding factors (C/EBPs). All promoters were found to have binding sites for these transcription factors except HSD17B1. Ectopic expression of C/EBPα or C/EBPß in HepG2 cells showed that HSD17B11 expression was induced by both transcription factors while HSD17B10 expression was only induced by C/EBPß. The first 500bp of the 5'-flanking region of both genes contain two putative binding sites for C/EBPs. Gene reporter assays showed that C/EBPß transactivated HSD17B10 but not HSD17B11. Additional experiments showed that several isoforms of C/EBPß are involved in HSD17B10 regulation. Mutation of the CCAAT box located at -30/-19 induced HSD17B10 promoter activity when only LIP was expressed, while impaired LAP-induced HSD17B10 transactivation in HepG2 cells when LAP isoforms are expressed. Taken together, our findings reveal that HSD17B10 is regulated by several isoforms of C/EBPß in HepG2 cells.


Assuntos
3-Hidroxiacil-CoA Desidrogenases/genética , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Regulação da Expressão Gênica , Regiões Promotoras Genéticas , Sequência de Bases , Proteína beta Intensificadora de Ligação a CCAAT/genética , Células Hep G2 , Humanos , Dados de Sequência Molecular , Mutação , Ligação Proteica , Ativação Transcricional
19.
J Endocrinol ; 200(1): 85-92, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18852215

RESUMO

Hydroxysteroid (17-beta) dehydrogenase (HSD17B) are the enzymes responsible for the reversible interconversion of 17-hydroxy and 17-keto steroids. The human and mouse type 8 17beta-HSD (HSD17B8) selectively catalyze the conversion of estradiol (E2) to estrone (E1). We previously described thatHSD17B8 is transcriptionally regulated by C/EBPbeta, and that C/EBPbeta is bound to CCAAT boxes located at -5 and -46 of the transcription start site in basal conditions in HepG2 cells. Furthermore, ectopic expression of C/EBPbeta transactivated the HSD17B8 promoter activity. Here, we show that HSD17B8 expression is up-regulated in response to E2 in the estrogen receptor alpha (ERalpha) positive MCF-7 cells. Results showed that this induction is mediated by ERalpha because i) E2 did not induce HSD17B8 expression in ERalphanegative HepG2 cells, ii) ectopic expression of ERalpha restored E2-induced HSD17B8 expression, and iii) this induction was blocked by the anti-ER ICI 182,780. Additional experiments showed that no estrogen response element was necessary for this regulation. However, the CCAAT boxes located at the HSD17B8 proximal promoter were required for E2-induced transcription. Furthermore, co-immunoprecipitation studies revealed tethering of ERalphatoC/EBPbeta in response to E2 in cells expressing ERalpha. Additionally, chromatin immunoprecipitation assays demonstrated that, in response to E2, ERalpha is recruited to the CCAAT boxes in which C/EBPbeta is already bound. Taken together, our results reveal that ERalpha is involved in the transcriptional regulation of HSD17B8 gene in response to E2 through its interaction with C/EBPbeta.


Assuntos
Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Estradiol/metabolismo , Receptor alfa de Estrogênio/metabolismo , Expressão Gênica , Oxirredutases/genética , Proteínas/genética , Receptor Cross-Talk , Transdução de Sinais , Proteína beta Intensificadora de Ligação a CCAAT/genética , Linhagem Celular , Receptor alfa de Estrogênio/genética , Humanos , Oxirredutases/metabolismo , Ligação Proteica , Proteínas/metabolismo , Regulação para Cima
20.
J Steroid Biochem Mol Biol ; 105(1-5): 131-9, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17583490

RESUMO

17beta-Hydroxysteroid dehydrogenases (17beta-HSD) regulate the intracellular concentration of active sex steroid hormones in target tissues. To date, at least 14 different isozymes have been identified. The type 8 17beta-hydroxysteroid dehydrogenase (17beta-HSD8) selectively catalyzes the conversion of estradiol (E2) to estrone (E1). To map the promoter region and to investigate its regulation, we cloned and fused a 1600 bp DNA fragment upstream of the 17beta-HSD8 transcriptional start site to a luciferase reporter gene. After transient transfection in HepG2 cells, this fragment was shown to possess promoter activity. Deletion constructs of the 5' flanking region of the 17beta-HSD8 gene led to the identification of the minimal promoter region within the first 75 bp upstream of the transcriptional start site. This region included two CCAAT boxes and sequences closely resembling the consensus Sp1 and NF-kappaB motifs. Site directed mutagenesis revealed that the CCAAT boxes were essential for transcription in HepG2. EMSA, supershift and chromatin immunoprecipitation reflected that these sequences were binding sites for C/EBPbeta. Furthermore, promoter activity was increased by the co-transfection of a C/EBPbeta expression vector, and this transactivation was through both CCAAT boxes. Our studies indicate that C/EBPbeta is essential for the transcription of the 17beta-HSD8 gene in the liver.


Assuntos
17-Hidroxiesteroide Desidrogenases/genética , Proteína beta Intensificadora de Ligação a CCAAT/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Transcrição Gênica/fisiologia , Animais , Sequência de Bases , Linhagem Celular , Imunoprecipitação da Cromatina , DNA , Ensaio de Desvio de Mobilidade Eletroforética , Humanos , Fígado/metabolismo , Camundongos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Regiões Promotoras Genéticas , Homologia de Sequência do Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...