Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(6): 8341-8353, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38170360

RESUMO

Marine plastic pollution is a well-recognised and debated issue affecting most marine ecosystems. Despite this, the threat of plastic pollution on seagrasses has not received significant scientific attention compared to other marine species and habitats. The present review aims to summarise the scientific data published in the last decade (January 2012-2023), concerning the evaluation of plastic pollution, of all sizes and types, including bio-based polymers, on several seagrass species worldwide. To achieve this goal, a comprehensive and critical review of 26 scientific papers has been carried out, taking into consideration the investigated areas, the seagrass species and the plant parts considered, the experimental design and the type of polymers analysed, both in field monitoring and in laboratory-controlled experiments. The outcomes of the present review clearly showed that the dynamics and effects of plastic pollution in seagrass are still under-explored. Most data emerged from Europe, with little or no data on plastic pollution in North and South America, Australia, Africa and Antarctica. Most of the studies were devoted to microplastics, with limited studies dedicated to macroplastics and only one to nanoplastics. The methodological approach (in terms of experimental design and polymer physico-chemical characterisation) should be carefully standardised, beside the use of a model species, such as Zostera marina, and further laboratory experiments. All these knowledge gaps must be urgently fulfilled, since valuable and reliable scientific knowledge is necessary to improve seagrass habitat protection measures against the current plastic pollution crisis.


Assuntos
Ecossistema , Plásticos , Poluição Ambiental , Microplásticos , Europa (Continente)
2.
Environ Sci Pollut Res Int ; 30(42): 95464-95474, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37548791

RESUMO

Seagrasses harbour different and rich epiphytic bacterial communities. These microbes may establish intimate and symbiotic relationships with the seagrass plants and change according to host species, environmental conditions, and/or ecophysiological status of their seagrass host. Although Posidonia oceanica is one of the most studied seagrasses in the world, and bacteria associated with seagrasses have been studied for over a decade, P. oceanica's microbiome remains hitherto little explored. Here, we applied 16S rRNA amplicon sequencing to explore the microbiome associated with the leaves of P. oceanica growing in two geomorphologically different meadows (e.g. depth, substrate, and turbidity) within the Limassol Bay (Cyprus). The morphometric (leaf area, meadow density) and biochemical (pigments, total phenols) descriptors highlighted the healthy conditions of both meadows. The leaf-associated bacterial communities showed similar structure and composition in the two sites; core microbiota members were dominated by bacteria belonging to the Thalassospiraceae, Microtrichaceae, Enterobacteriaceae, Saprospiraceae, and Hyphomonadaceae families. This analogy, even under different geomorphological conditions, suggest that in the absence of disturbances, P. oceanica maintains characteristic-associated bacterial communities. This study provides a baseline for the knowledge of the P. oceanica microbiome and further supports its use as a putative seagrass descriptor.


Assuntos
Alismatales , Humanos , RNA Ribossômico 16S/análise , Alismatales/química , Bactérias , Folhas de Planta/química , Enterobacteriaceae , Mar Mediterrâneo
3.
Environ Sci Pollut Res Int ; 28(31): 42891-42900, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33829380

RESUMO

Due to the continuous development, production and consumption of nanoparticles (NPs), their release, fate and effects in marine coastal environment can represent a major concern. The aim of this study was to evaluate the toxicity of ZnO nanoparticles (ZnO NPs) and compare it to bulk ZnSO4 on three macroinvertebrates: the isopod Cymodoce truncata (i.e. used for the first time in ecotoxicology), the amphipod Gammarus aequicauda and the sea urchin Paracentrotus lividus. This study showed concentration- and time-dependent relationships for all biological models for both ZnO NPs and ZnSO4. Both Zn forms elicited high toxicity to G. aequicauda and C. truncata juveniles, but ZnO NPs induced comparable responses to both species (96h-LC50 = 0.30 and 0.37 mg/L for G. aequicauda and C. truncata, respectively; p > 0.05), while differences were found after ZnSO4 exposure (96h-LC50 = 0.28 and 0.63 mg/L, respectively; p < 0.05). ZnO NPs generated sub-lethal effects on P. lividus embryos (72h-EC50 = 0.04 (0.03, 0.05) mg/L), not significantly different from ZnSO4 ones (72h-EC50 = 0.06 (0.05, 0.07) mg/L). Effects of ZnO NPs were similar to existing literature data for other testing species. C. truncata can be considered as a promising new biological model in (nano)ecotoxicology.


Assuntos
Anfípodes , Isópodes , Nanopartículas Metálicas , Paracentrotus , Óxido de Zinco , Animais , Nanopartículas Metálicas/toxicidade , Zinco , Óxido de Zinco/toxicidade
4.
Antibiotics (Basel) ; 9(4)2020 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-32268481

RESUMO

Sea turtles have been proposed as health indicators of marine habitats and carriers of antibiotic-resistant bacterial strains, for their longevity and migratory lifestyle. Up to now, a few studies evaluated the antibacterial resistant flora of Mediterranean loggerhead sea turtles (Caretta caretta) and most of them were carried out on stranded or recovered animals. In this study, the isolation and the antibiotic resistance profile of 90 Gram negative bacteria from cloacal swabs of 33 Mediterranean wild captured loggerhead sea turtles are described. Among sea turtles found in their foraging sites, 23 were in good health and 10 needed recovery for different health problems (hereafter named weak). Isolated cloacal bacteria belonged mainly to Enterobacteriaceae (59%), Shewanellaceae (31%) and Vibrionaceae families (5%). Although slight differences in the bacterial composition, healthy and weak sea turtles shared antibiotic-resistant strains. In total, 74 strains were endowed with one or multi resistance (up to five different drugs) phenotypes, mainly towards ampicillin (~70%) or sulfamethoxazole/trimethoprim (more than 30%). Hence, our results confirmed the presence of antibiotic-resistant strains also in healthy marine animals and the role of the loggerhead sea turtles in spreading antibiotic-resistant bacteria.

5.
Environ Sci Pollut Res Int ; 27(25): 30957-30968, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31814077

RESUMO

This study investigated for the first time the effects of ZnO nanoparticle (NP) chronic exposure (28 days) on Tigriopus fulvus. Acute toxicity (48 h) of three Zn chemical forms was assessed as well including the following: (a) ZnO nanoparticles (NPs), (b) Zn2+ from ZnO NP suspension after centrifugation (supernatant) and (c) ZnSO4 H2O. Physical-chemical and electronic microscopies were used to characterize spiked exposure media. Results showed that the dissolution of ZnO NPs was significant, with a complete dissolution at lowest test concentrations, but nano- and micro-aggregates were always present. Acute test evidenced a significant higher toxicity of Zn2+ and ZnSO4 compared to ZnO NPs. The chronic exposure to ZnO NPs caused negative effects on the reproductive traits, i.e. brood duration, brood size and brood number at much lower concentrations (≥ 100 µg/L). The appearance of ovigerous females was delayed at higher concentrations of ZnO NPs, while the time required for offspring release and the percentage of non-viable eggs per female were significantly increased. ZnO NP subchronic exposure evidenced its ability to reduce T. fulvus individual reproductive fitness, suggesting that ZnO NPs use and release must be carefully monitored. Graphical abstract Graphical Abstract.


Assuntos
Copépodes , Nanopartículas Metálicas , Nanopartículas , Óxido de Zinco , Animais
6.
Mar Environ Res ; 153: 104828, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31733911

RESUMO

Halophila stipulacea is a small tropical seagrass species native to the Red Sea. Due to its invasive character, there is growing interest in understanding its ability to thrive in a broad range of ecological niches. We studied temporal (February 2014 and July 2014), depth (5, 9, 18 m) and spatial (NB and SB) related dynamics of H. stipulacea meadows in the northern Gulf of Aqaba. We evaluated changes in density, morphometry, biomass, and biochemical parameters alongside the reproductive effort. In both sites, maximal growth and vegetative performance occurred in the summer with a marked increase of 35% in shoot density and 18% in biomass; PAR reduction with season and depth induced a significant increase of 28% in leaf area. Sexual reproduction efforts were only observed in July, and the density of plants carrying male or female flowers decreased significantly with depth. The favorable growth responses of H. stipulacea plants observed in the N-enriched NB site suggests their capacity to acclimate to human-disturbed nearshore environments.

7.
Mar Environ Res ; 141: 313-321, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30274720

RESUMO

The aim of this study was to detect ecotoxicological effects of 0.1 µm polystyrene microbeads in marine organisms belonging to different trophic levels. MP build up, lethal and sub-lethal responses were investigated in the bacterium Vibrio anguillarum (culturability), in the green microalga Dunaliella tertiolecta (growth inhibition), in the rotifer Brachionus plicatilis (mortality and swimming speed alteration) and in the sea urchin Paracentrotus lividus (immobility and swimming speed alteration) exposed to a wide range of microplastic (MP) concentrations (from 0.001 to 10 mg L-1). Survival was not affected in all organisms up to 10 mg L-1, while algal growth inhibition, rotifer and sea urchin larvae swimming behaviour alterations were observed after exposure to MPs. Ingestion was only observed in rotifers and it was directly correlated with sub-lethal effects. These results account for the ecotoxicological risk associated to the polystyrene microbeads, which are able to affect different endpoints in primary producers and consumers (rotifers and sea urchins) since no effects were observed in decomposers. This study points out the importance of using a battery of marine organisms belonging to different trophic levels by studying acute toxicity of MPs at low and high contamination levels, and investigating sub-lethal responses. Further investigations aimed at studying the transfer of these materials through the web are particularly recommended.


Assuntos
Organismos Aquáticos , Plásticos/toxicidade , Poliestirenos/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Clorófitas , Cadeia Alimentar , Microesferas , Rotíferos , Ouriços-do-Mar , Solanaceae , Vibrio
8.
Environ Int ; 118: 325-333, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29960187

RESUMO

Copper oxide nanoparticles (CuO NPs) are extensively used in various industrial and commercial applications. Despite their wide application may lead to the contamination of marine ecosystem, their potential environmental effects remain to be determined. Toxicity assessment studies have primarily focused on investigating the effects of CuO NPs on fertilization success and embryo development of different sea urchin species while the impact on sperm quality have never been assessed. In this line, this study aims to assess the effects of CuO NPs on the spermatozoa of the sea urchin Paracentrotus lividus. After sperm exposure to CuO NPs, biomarkers of sperm viability, cytotoxicity, oxidative stress, and genotoxicity as well as morphology were evaluated. Results showed that CuO NPs exposure decreased sperm viability, impaired mitochondrial activity and increased the production of reactive oxygen species (ROS) and lipid peroxidation. Furthermore, CuO NPs exposure caused DNA damage and morphological alterations. Together with the antioxidant rescue experiments, these results suggest that oxidative stress is the main driver of CuO NP spermiotoxic effects. The mechanism of toxicity is here proposed: the spontaneous generation of ROS induced by CuO NPs and the disruption of the mitochondrial respiratory chain lead to production of ROS that, in turn, induce lipid peroxidation and DNA damage, and result in defective spermatozoa up to induce sperm cytotoxicity. Investigating the effects of CuO NPs on sea urchin spermatozoa, this study provides valuable insights into the mechanism of reproductive toxicity induced by CuO NPs.


Assuntos
Cobre/toxicidade , Nanopartículas Metálicas/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Ouriços-do-Mar/efeitos dos fármacos , Espermatozoides/efeitos dos fármacos , Animais , Dano ao DNA/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Mutagênicos/toxicidade
9.
Front Microbiol ; 8: 2076, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29118743

RESUMO

Bacteria are used in ecotoxicology for their important role in marine ecosystems and their quick, reproducible responses. Here we applied a recently proposed method to assess the ecotoxicity of nanomaterials on the ubiquitous marine bacterium Vibrio anguillarum, as representative of brackish and marine ecosystems. The test allows the determination of 6-h EC50 in a wide range of salinity, by assessing the reduction of bacteria actively replicating and forming colonies. The toxicity of copper oxide nanoparticles (CuO NPs) at different salinities (5-20-35 ‰) was evaluated. CuSO4 5H2O and CuO bulk were used as reference toxicants (solubility and size control, respectively). Aggregation and stability of CuO NP in final testing dispersions were characterized; Cu2+ dissolution and the physical interactions between Vibrio and CuO NPs were also investigated. All the chemical forms of copper showed a clear dose-response relationship, although their toxicity was different. The order of decreasing toxicity was: CuSO4 5H2O > CuO NP > CuO bulk. As expected, the size of CuO NP aggregates increased with salinity and, concurrently, their toxicity decreased. Results confirmed the intrinsic toxicity of CuO NPs, showing modest Cu2+ dissolution and no evidence of CuO NP internalization or induction of bacterial morphological alterations. This study showed the V. anguillarum bioassay as an effective tool for the risk assessment of nanomaterials in marine and brackish environments.

10.
J Vis Exp ; (123)2017 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-28605381

RESUMO

Bacteria are an important component of the ecosystem, and microbial community alterations can have a significant effect on biogeochemical cycling and food webs. Toxicity testing based on microorganisms are widely used because they are relatively quick, reproducible, cheap, and are not associated with ethical issues. Here, we describe an ecotoxicological method to evaluate the biological response of the marine bacterium Vibrio anguillarum. This method assesses the acute toxicity of chemical compounds, including new contaminants such as nanoparticles, as well as environmental samples. The endpoint is the reduction of bacterial culturability (i.e., the capability to replicate and form colonies) due to exposure to a toxicant. This reduction can be generally referred to as mortality. The test allows for the determination of the LC50, the concentration that causes a 50% decrease of bacteria actively replicating and forming colonies, after a 6 h exposure. The culturable bacteria are counted in terms of colony forming units (CFU), and the "mortality" is evaluated and compared to the control. In this work, the toxicity of copper sulphate (CuSO4) was evaluated. A clear dose-response relationship was observed, with a mean LC50 of 1.13 mg/L, after three independent tests. This protocol, compared to existing methods with microorganisms, is applicable in a wider range of salinity and has no limitations for colored/turbid samples. It uses saline solution as the exposure medium, avoiding any possible interferences of growth medium with the investigated contaminants. The LC50 calculation facilitates comparisons with other bioassays commonly applied to ecotoxicological assessments of the marine environment.


Assuntos
Bactérias/patogenicidade , Ecotoxicologia/métodos , Testes de Toxicidade/métodos , Vibrio/patogenicidade , Sulfato de Cobre
11.
Ecotoxicol Environ Saf ; 143: 180-185, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28550804

RESUMO

A research project has been performed to the request of the RAMOGE Executive Secretariat to identify differences between dispersant approval procedures in France and Italy and propose ways to harmonize them. A collaborative study has been conducted by CEDRE (Centre of Documentation, Research and Experimentation on Accidental Water Pollution) and ISPRA (Italian Institute for Environmental Protection and Research) to: a) compare current approval procedures in Italy and France with identification of differences and commonalities; b) carry out toxicity tests using both procedures on two selected dispersants; c) propose a common approach between Italy and France. The results showed that, because of the differences in ecotoxicological tests and in the evaluation criteria used, the outcomes on the same products could be different in Italy and in France. Both tested dispersants met the French requirements for approval (LC50 ≥ 10 times reference toxicant), while only one dispersant met the Italian approval criterion (EC50 > 10mg/L). A possible way of harmonizing the approval procedures could be to increase the number of test organisms in the French procedure, which currently only uses one crustacean species. Furthermore, a common criterion for toxicity assessment should be discussed and agreed.


Assuntos
Petróleo , Poluentes Químicos da Água/toxicidade , Animais , Crustáceos/efeitos dos fármacos , Diatomáceas/efeitos dos fármacos , Diatomáceas/crescimento & desenvolvimento , Peixes , França , Itália , Testes de Toxicidade
12.
Front Plant Sci ; 7: 2015, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28119709

RESUMO

Halophila stipulacea is a small tropical seagrass species. It is the dominant seagrass species in the Gulf of Aqaba (GoA; northern Red Sea), where it grows in both shallow and deep environments (1-50 m depth). Native to the Red Sea, Persian Gulf, and Indian Ocean, this species has invaded the Mediterranean and has recently established itself in the Caribbean Sea. Due to its invasive nature, there is growing interest to understand this species' capacity to adapt to new conditions, which might be attributed to its ability to thrive in a broad range of ecological niches. In this study, a multidisciplinary approach was used to depict variations in morphology, biochemistry (pigment and phenol content) and epiphytic bacterial communities along a depth gradient (4-28 m) in the GoA. Along this gradient, H. stipulacea increased leaf area and pigment contents (Chlorophyll a and b, total Carotenoids), while total phenol contents were mostly uniform. H. stipulacea displayed a well conserved core bacteriome, as assessed by 454-pyrosequencing of 16S rRNA gene reads amplified from metagenomic DNA. The core bacteriome aboveground (leaves) and belowground (roots and rhizomes), was composed of more than 100 Operational Taxonomic Units (OTUs) representing 63 and 52% of the total community in each plant compartment, respectively, with a high incidence of the classes Alphaproteobacteria, Gammaproteobacteria, and Deltaproteobacteria across all depths. Above and belowground communities were different and showed higher within-depth variability at the intermediate depths (9 and 18 m) than at the edges. Plant parts showed a clear influence in shaping the communities while depth showed a greater influence on the belowground communities. Overall, results highlighted a different ecological status of H. stipulacea at the edges of the gradient (4-28 m), where plants showed not only marked differences in morphology and biochemistry, but also the most distinct associated bacterial consortium. We demonstrated the pivotal role of morphology, biochemistry (pigment and phenol content), and epiphytic bacterial communities in helping plants to cope with environmental and ecological variations. The plant/holobiont capability to persist and adapt to environmental changes probably has an important role in its ecological resilience and invasiveness.

13.
Dose Response ; 11: 550-7, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24298230

RESUMO

Hormesis is a biphasic dose-response relationship, occurring when low concentrations of toxic agents elicit apparent improvements. In this work, the ability of sub-inhibitory concentrations of Tetracycline to induce hormetic response in a model organism was investigated. To this aim a reference strain of Escherichia coli, MG1655, was exposed to six decreasing doses of Tetracycline (between 0.12 and 0.00375 µg/ml), much lower than the Minimal Inhibitory Concentration (4 µg/ml). An hormetic increase was observed at the intermediate concentrations (0.015-0.03 µg/ml) of the tested range. The Colony Forming Unit number, indeed, rose up to 141% and 121% as compared to the control. At the highest (0.12 µg/ml) and lowest (0.00375 µg/ml) concentrations a slight decrease in CFU number was found. Results demonstrated that, in Escherichia coli, low concentrations of Tetracycline bias the bacterial numerical increase through a hormetic response; the dose-response curve describing this numerical increase is an U-inverted curve. Furthermore, these data confirm that hormesis is common to many - if not all - living systems, including bacteria; they underline the relevance of a deepened knowledge of both the effects and the possible consequences of exposure to low doses of contaminants.

14.
Dose Response ; 8(4): 414-27, 2010 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-21191482

RESUMO

In order to evaluate the hormetic response of the weed Lythrum salicaria to drug exposure we investigated the effects of the antibiotic Sulfadimethoxine by growing Lythrum plants for 28 days on culture media containing different drug concentrations (between 0.005 and 50 mg.L(-1)). The antibiotic was absorbed by plants and can be found in plant tissue. The plant response was organ-dependent: roots, cotyledons and cotyledon petioles, were always affected by a toxic effect, whilst internodes and leaves length, showed a variable dose-depending response, with an increased growth at the lower drug concentrations and toxic effects at the higher ones. This variable response was probably dependant on different levels of local contamination resulting from a balance between accumulation rate and drug dilution in the increasing plant biomass. As a consequence, drug toxicity or hormetic response varied according to concentration and were different in each of the examined plant organ/tissue. Thus, even if hormesis can be considered a general plant response, each plant organ/tissue responds differently, depending on the local drug concentration and exposure time.

15.
BMC Ecol ; 7: 6, 2007 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-17663776

RESUMO

BACKGROUND: The endemic seagrass Posidonia oceanica (L.) Delile colonizes soft bottoms producing highly productive meadows that play a crucial role in coastal ecosystems dynamics. Human activities and natural events are responsible for a widespread meadows regression; to date the identification of "diagnostic" tools to monitor conservation status is a critical issue. In this study the feasibility of a novel tool to evaluate ecological impacts on Posidonia meadows has been tested. Quantification of a putative stress indicator, i.e. phenols content, has been coupled to 2-D electrophoretic protein analysis of rhizome samples. RESULTS: The overall expression pattern from Posidonia rhizome was determined using a preliminary proteomic approach, 437 protein spots were characterized by pI and molecular weight. We found that protein expression differs in samples belonging to sites with high or low phenols: 22 unique protein spots are peculiar of "low phenols" and 27 other spots characterize "high phenols" samples. CONCLUSION: Posidonia showed phenols variations within the meadow, that probably reflect the heterogeneity of environmental pressures. In addition, comparison of the 2-D electrophoresis patterns allowed to highlight qualitative protein expression differences in response to these pressures. These differences may account for changes in metabolic/physiological pathways as adaptation to stress. A combined approach, based on phenols content determination and 2-D electrophoresis protein pattern, seems a promising tool to monitor Posidonia meadows health state.


Assuntos
Alismatales/crescimento & desenvolvimento , Monitoramento Ambiental , Fenóis/análise , Proteínas de Plantas/biossíntese , Alismatales/química , Eletroforese em Gel Bidimensional , Proteômica , Rizoma/química , Rizoma/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...