Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Chem Biol ; 19(3): 753-762, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38412264

RESUMO

Activating transcription factor 3 (ATF3) is an activation transcription factor/cyclic adenosine monophosphate (cAMP) responsive element-binding (CREB) protein family member. It is recognized as an important regulator of cancer progression by repressing expression of key inflammatory factors such as interferon-γ and chemokine (C-C motif) ligand 4 (CCL4). Here, we describe a novel library screening approach that probes individual leucine zipper components before combining them to search exponentially larger sequence spaces not normally accessible to intracellular screening. To do so, we employ two individual semirational library design approaches and screen using a protein-fragment complementation assay (PCA). First, a 248,832-member library explored 12 amino acid positions at all five a positions to identify those that provided improved binding, with all e/g positions fixed as Q, placing selection pressure onto the library options provided. Next, a 59,049-member library probed all ten e/g positions with 3 options. Similarly, during e/g library screening, a positions were locked into a generically bindable sequence pattern (AIAIA), weakly favoring leucine zipper formation, while placing selection pressure onto e/g options provided. The combined a/e/g library represents ∼14.7 billion members, with the resulting peptide, ATF3W_aeg, binding ATF3 with high affinity (Tm = 60 °C; Kd = 151 nM) while strongly disfavoring homodimerization. Moreover, ATF3W_aeg is notably improved over component PCA hits, with target specificity found to be driven predominantly by electrostatic interactions. The combined a/e/g exponential library screening approach provides a robust, accelerated platform for exploring larger peptide libraries, toward derivation of potent yet selective antagonists that avoid homoassociation to provide new insight into rational peptide design.


Assuntos
Fator 3 Ativador da Transcrição , Biblioteca de Peptídeos , Fator 3 Ativador da Transcrição/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/química , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Regulação da Expressão Gênica , Peptídeos/metabolismo
2.
Mol Cancer Ther ; 21(11): 1632-1644, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36121385

RESUMO

CCAAT/enhancer binding protein ß (C/EBPß) is a basic leucine zipper (bZIP) family transcription factor, which is upregulated or overactivated in many cancers, resulting in a gene expression profile that drives oncogenesis. C/EBPß dimerization regulates binding to DNA at the canonical TTGCGCAA motif and subsequent transcriptional activity, suggesting that disruption of dimerization represents a powerful approach to inhibit this previously "undruggable" oncogenic target. Here we describe the mechanism of action and antitumor activity of ST101, a novel and selective peptide antagonist of C/EBPß that is currently in clinical evaluation in patients with advanced solid tumors. ST101 binds the leucine zipper domain of C/EBPß, preventing its dimerization and enhancing ubiquitin-proteasome dependent C/EBPß degradation. ST101 exposure attenuates transcription of C/EBPß target genes, including a significant decrease in expression of survival, transcription factors, and cell-cycle-related proteins. The result of ST101 exposure is potent, tumor-specific in vitro cytotoxic activity in cancer cell lines including glioblastoma, breast, melanoma, prostate, and lung cancer, whereas normal human immune and epithelial cells are not impacted. Further, in mouse xenograft models ST101 exposure results in potent tumor growth inhibition or regression, both as a single agent and in combination studies. These data provide the First Disclosure of ST101, and support continued clinical development of ST101 as a novel strategy for targeting C/EBPß-dependent cancers.


Assuntos
Antineoplásicos , Proteína beta Intensificadora de Ligação a CCAAT , Animais , Humanos , Camundongos , Proteína beta Intensificadora de Ligação a CCAAT/antagonistas & inibidores , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Ligação Proteica , Antineoplásicos/farmacologia , Neoplasias Experimentais/tratamento farmacológico
3.
RSC Chem Biol ; 2(2): 656-668, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-34458807

RESUMO

To date, most research into the inhibition of oncogenic transcriptional regulator, Activator Protein 1 (AP-1), has focused on heterodimers of cJun and cFos. However, the Fra1 homologue remains an important cancer target. Here we describe library design coupled with computational and intracellular screening as an effective methodology to derive an antagonist that is selective for Fra1 relative to Jun counterparts. To do so the isCAN computational tool was used to rapidly screen >75 million peptide library members, narrowing the library size by >99.8% to one accessible to intracellular PCA selection. The resulting 131 072-member library was predicted to contain high quality binders with both a high likelihood of target engagement, while simultaneously avoiding homodimerization and off-target interaction with Jun homologues. PCA screening was next performed to enrich those members that meet these criteria. In particular, optimization was achieved via inclusion of options designed to generate the potential for compromised intermolecular contacts in both desired and non-desired species. This is an often-overlooked prerequisite in the conflicting design requirement of libraries that must be selective for their target in the context of a range of alternative potential interactions. Here we demonstrate that specificity is achieved via a combination of both hydrophobic and electrostatic contacts as exhibited by the selected peptide (Fra1W). In vitro analysis of the desired Fra1-Fra1W interaction further validates high Fra1 affinity (917 nM) yet selective binding relative to Fra1W homodimers or affinity for cJun. The isCAN → PCA based multidisciplinary approach provides a robust screening pipeline in generating target-specific hits, as well as new insight into rational peptide design in the search for novel bZIP family inhibitors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...