Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Sci Rep ; 12(1): 11714, 2022 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-35810186

RESUMO

SARS-CoV-2 infection triggers profound and variable immune responses in human hosts. Chromatin remodeling has been observed in individuals severely ill or convalescing with COVID-19, but chromatin remodeling early in disease prior to anti-spike protein IgG seroconversion has not been defined. We performed the Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq) and RNA-seq on peripheral blood mononuclear cells (PBMCs) from outpatients with mild or moderate symptom severity at different stages of clinical illness. Early in the disease course prior to IgG seroconversion, modifications in chromatin accessibility associated with mild or moderate symptoms were already robust and included severity-associated changes in accessibility of genes in interleukin signaling, regulation of cell differentiation and cell morphology. Furthermore, single-cell analyses revealed evolution of the chromatin accessibility landscape and transcription factor motif accessibility for individual PBMC cell types over time. The most extensive remodeling occurred in CD14+ monocytes, where sub-populations with distinct chromatin accessibility profiles were observed prior to seroconversion. Mild symptom severity was marked by upregulation of classical antiviral pathways, including those regulating IRF1 and IRF7, whereas in moderate disease, these classical antiviral signals diminished, suggesting dysregulated and less effective responses. Together, these observations offer novel insight into the epigenome of early mild SARS-CoV-2 infection and suggest that detection of chromatin remodeling in early disease may offer promise for a new class of diagnostic tools for COVID-19.


Assuntos
COVID-19 , Cromatina , Antivirais , COVID-19/genética , Cromatina/genética , Humanos , Imunoglobulina G/genética , Leucócitos Mononucleares , SARS-CoV-2 , Soroconversão , Índice de Gravidade de Doença
3.
Cell Stem Cell ; 29(6): 905-917.e6, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35508177

RESUMO

Patient-derived xenografts (PDXs) and patient-derived organoids (PDOs) have been shown to model clinical response to cancer therapy. However, it remains challenging to use these models to guide timely clinical decisions for cancer patients. Here, we used droplet emulsion microfluidics with temperature control and dead-volume minimization to rapidly generate thousands of micro-organospheres (MOSs) from low-volume patient tissues, which serve as an ideal patient-derived model for clinical precision oncology. A clinical study of recently diagnosed metastatic colorectal cancer (CRC) patients using an MOS-based precision oncology pipeline reliably assessed tumor drug response within 14 days, a timeline suitable for guiding treatment decisions in the clinic. Furthermore, MOSs capture original stromal cells and allow T cell penetration, providing a clinical assay for testing immuno-oncology (IO) therapies such as PD-1 blockade, bispecific antibodies, and T cell therapies on patient tumors.


Assuntos
Neoplasias do Colo , Medicina de Precisão , Neoplasias do Colo/patologia , Humanos , Imunoterapia , Organoides/patologia
4.
Res Sq ; 2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35411343

RESUMO

SARS-CoV-2 infection triggers profound and variable immune responses in human hosts. Chromatin remodeling has been observed in individuals severely ill or convalescing with COVID-19, but chromatin remodeling early in disease prior to anti-spike protein IgG seroconversion has not been defined. We performed the Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq) and RNA-seq on peripheral blood mononuclear cells (PBMCs) from outpatients with mild or moderate symptom severity at different stages of clinical illness. Early in the disease course prior to IgG seroconversion, modifications in chromatin accessibility associate with mild or moderate symptoms are already robust and include severity-associated changes in accessibility of genes in interleukin signaling, regulation of cell differentiation and cell morphology. Furthermore, single-cell analyses revealed evolution of the chromatin accessibility landscape and transcription factor motif accessibility for individual PBMC cell types over time. The most extensive remodeling occurred in CD14+ monocytes, where sub-populations with distinct chromatin accessibility profiles were observed prior to seroconversion. Mild symptom severity is marked by upregulation classical antiviral pathways including those regulating IRF1 and IRF7, whereas in moderate disease these classical antiviral signals diminish suggesting dysregulated and less effective responses. Together, these observations offer novel insight into the epigenome of early mild SARS-CoV-2 infection and suggest that detection of chromatin remodeling in early disease may offer promise for a new class of diagnostic tools for COVID-19.

5.
Mol Cell ; 81(17): 3637-3649.e5, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34478654

RESUMO

The off-target activity of the CRISPR-associated nuclease Cas9 is a potential concern for therapeutic genome editing applications. Although high-fidelity Cas9 variants have been engineered, they exhibit varying efficiencies and have residual off-target effects, limiting their applicability. Here, we show that CRISPR hybrid RNA-DNA (chRDNA) guides provide an effective approach to increase Cas9 specificity while preserving on-target editing activity. Across multiple genomic targets in primary human T cells, we show that 2'-deoxynucleotide (dnt) positioning affects guide activity and specificity in a target-dependent manner and that this can be used to engineer chRDNA guides with substantially reduced off-target effects. Crystal structures of DNA-bound Cas9-chRDNA complexes reveal distorted guide-target duplex geometry and allosteric modulation of Cas9 conformation. These structural effects increase specificity by perturbing DNA hybridization and modulating Cas9 activation kinetics to disfavor binding and cleavage of off-target substrates. Overall, these results pave the way for utilizing customized chRDNAs in clinical applications.


Assuntos
Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Linfócitos T/metabolismo , Proteína 9 Associada à CRISPR/fisiologia , Proteínas Associadas a CRISPR/metabolismo , Proteínas Associadas a CRISPR/fisiologia , DNA/genética , Endonucleases/genética , Edição de Genes/métodos , Técnicas Genéticas , Genoma/genética , Genômica/métodos , Humanos , Leucócitos Mononucleares/metabolismo , Conformação Molecular , RNA Guia de Cinetoplastídeos/genética , Relação Estrutura-Atividade , Linfócitos T/fisiologia
6.
Med ; 2(6): 755-772.e5, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-33870241

RESUMO

BACKGROUND: Sexual dimorphisms in immune responses contribute to coronavirus disease 2019 (COVID-19) outcomes, but the mechanisms governing this disparity remain incompletely understood. METHODS: We carried out sex-balanced sampling of peripheral blood mononuclear cells from hospitalized and non-hospitalized individuals with confirmed COVID-19, uninfected close contacts, and healthy control individuals for 36-color flow cytometry and single-cell RNA sequencing. FINDINGS: Our results revealed a pronounced reduction of circulating mucosal-associated invariant T (MAIT) cells in infected females. Integration of published COVID-19 airway tissue datasets suggests that this reduction represented a major wave of MAIT cell extravasation during early infection in females. Moreover, MAIT cells from females possessed an immunologically active gene signature, whereas cells from males were pro-apoptotic. CONCLUSIONS: Our findings uncover a female-specific protective MAIT cell profile, potentially shedding light on reduced COVID-19 susceptibility in females. FUNDING: This work was supported by NIH/NIAID (U01AI066569 and UM1AI104681), the Defense Advanced Projects Agency (DARPA; N66001-09-C-2082 and HR0011-17-2-0069), the Veterans Affairs Health System, and Virology Quality Assurance (VQA; 75N93019C00015). The content is solely the responsibility of the authors and does not necessarily represent the official view of the National Institutes of Health. COVID-19 samples were processed under Biosafety level 2 (BSL-2) with aerosol management enhancement or BSL-3 in the Duke Regional Biocontainment Laboratory, which received partial support for construction from NIH/NIAID (UC6AI058607).


Assuntos
COVID-19 , Células T Invariantes Associadas à Mucosa , Feminino , Citometria de Fluxo , Humanos , Leucócitos Mononucleares , Ativação Linfocitária , Masculino , Estados Unidos
7.
bioRxiv ; 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33300002

RESUMO

SARS-CoV-2 infection triggers highly variable host responses and causes varying degrees of illness in humans. We sought to harness the peripheral blood mononuclear cell (PBMC) response over the course of illness to provide insight into COVID-19 physiology. We analyzed PBMCs from subjects with variable symptom severity at different stages of clinical illness before and after IgG seroconversion to SARS-CoV-2. Prior to seroconversion, PBMC transcriptomes did not distinguish symptom severity. In contrast, changes in chromatin accessibility were associated with symptom severity. Furthermore, single-cell analyses revealed evolution of the chromatin accessibility landscape and transcription factor motif occupancy for individual PBMC cell types. The most extensive remodeling occurred in CD14+ monocytes where sub-populations with distinct chromatin accessibility profiles were associated with disease severity. Our findings indicate that pre-seroconversion chromatin remodeling in certain innate immune populations is associated with divergence in symptom severity, and the identified transcription factors, regulatory elements, and downstream pathways provide potential prognostic markers for COVID-19 subjects.

8.
Nat Biotechnol ; 37(12): 1471-1477, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31740839

RESUMO

Type I CRISPR-Cas systems are the most abundant adaptive immune systems in bacteria and archaea1,2. Target interference relies on a multi-subunit, RNA-guided complex called Cascade3,4, which recruits a trans-acting helicase-nuclease, Cas3, for target degradation5-7. Type I systems have rarely been used for eukaryotic genome engineering applications owing to the relative difficulty of heterologous expression of the multicomponent Cascade complex. Here, we fuse Cascade to the dimerization-dependent, non-specific FokI nuclease domain8-11 and achieve RNA-guided gene editing in multiple human cell lines with high specificity and efficiencies of up to ~50%. FokI-Cascade can be reconstituted via an optimized two-component expression system encoding the CRISPR-associated (Cas) proteins on a single polycistronic vector and the guide RNA (gRNA) on a separate plasmid. Expression of the full Cascade-Cas3 complex in human cells resulted in targeted deletions of up to ~200 kb in length. Our work demonstrates that highly abundant, previously untapped type I CRISPR-Cas systems can be harnessed for genome engineering applications in eukaryotic cells.


Assuntos
Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Escherichia coli , Genoma/genética , Células HEK293 , Humanos , Modelos Genéticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...