Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Cell Physiol ; 320(6): C1074-C1087, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33852365

RESUMO

Voltage-gated Kv7 (KCNQ family) K+ channels are expressed in many neuronal populations and play an important role in regulating membrane potential by generating a hyperpolarizing K+ current and decreasing cell excitability. However, the role of KV7 channels in the neural regulation of intestinal epithelial Cl- secretion is not known. Cl- secretion in mouse distal colon was measured as a function of short-circuit current (ISC), and pharmacological approaches were used to test the hypothesis that activation of KV7 channels in enteric neurons would inhibit epithelial Cl- secretion. Flupirtine, a nonselective KV7 activator, inhibited basal Cl- secretion in mouse distal colon and abolished or attenuated the effects of drugs that target various components of enteric neurotransmission, including tetrodotoxin (NaV channel blocker), veratridine (NaV channel activator), nicotine (nicotinic acetylcholine receptor agonist), and hexamethonium (nicotinic antagonist). In contrast, flupritine did not block the response to epithelium-targeted agents VIP (endogenous VPAC receptor ligand) or carbachol (nonselective cholinergic agonist). Flupirtine inhibited Cl- secretion in both full-thickness and seromuscular-stripped distal colon (containing the submucosal, but not myenteric plexus) but generated no response in epithelial T84 cell monolayers. KV7.2 and KV7.3 channel proteins were detected by immunofluorescence in whole mount preparations of the submucosa from mouse distal colon. ICA 110381 (KV7.2/7.3 specific activator) inhibited Cl- secretion comparably to flupirtine. We conclude that KV7 channel activators inhibit neurally driven Cl- secretion in the colonic epithelium and may therefore have therapeutic benefit in treating pathologies associated with hyperexcitable enteric nervous system, such as irritable bowel syndrome with diarrhea (IBS-D).


Assuntos
Cloretos/metabolismo , Colo/metabolismo , Sistema Nervoso Entérico/efeitos dos fármacos , Células Epiteliais/metabolismo , Canais de Potássio KCNQ/metabolismo , Neurônios/metabolismo , Aminopiridinas/farmacologia , Animais , Carbacol/farmacologia , Linhagem Celular Tumoral , Agonistas Colinérgicos/farmacologia , Colo/efeitos dos fármacos , Sistema Nervoso Entérico/metabolismo , Células Epiteliais/efeitos dos fármacos , Feminino , Humanos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , Neurônios/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos
2.
Int J Mol Sci ; 19(5)2018 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-29748496

RESUMO

Calcium-activated chloride secretion in epithelial tissues has been described for many years. However, the molecular identity of the channel responsible for the Ca2+-activated Cl− secretion in epithelial tissues has remained a mystery. More recently, TMEM16A has been identified as a new putative Ca2+-activated Cl− channel (CaCC). The primary goal of this article will be to review the characterization of TMEM16A, as it relates to the physical structure of the channel, as well as important residues that confer voltage and Ca2+-sensitivity of the channel. This review will also discuss the role of TMEM16A in epithelial physiology and potential associated-pathophysiology. This will include discussion of developed knockout models that have provided much needed insight on the functional localization of TMEM16A in several epithelial tissues. Finally, this review will examine the implications of the identification of TMEM16A as it pertains to potential novel therapies in several pathologies.


Assuntos
Anoctamina-1/genética , Sinalização do Cálcio/genética , Canais de Cloreto/genética , Proteínas de Neoplasias/genética , Anoctamina-1/química , Cálcio/química , Agonistas dos Canais de Cálcio/química , Canais de Cloreto/química , Cloretos/química , Epitélio/química , Epitélio/metabolismo , Humanos , Proteínas de Neoplasias/química
3.
Am J Physiol Cell Physiol ; 315(1): C10-C20, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29561662

RESUMO

Attenuated Ca2+-activated Cl- secretion has previously been observed in the model of dextran sulfate sodium (DSS)-induced colitis. Prior studies have implicated dysfunctional muscarinic signaling from basolateral membranes as the potential perpetrator leading to decreased Ca2+-activated Cl- secretion. However, in our chronic model of DSS-colitis, cholinergic receptor muscarinic 3 ( Chrm3) transcript (1.028 ± 0.12 vs. 1.029 ± 0.27, P > 0.05) and CHRM3 protein expression (1.021 ± 0.24 vs. 0.928 ± 0.09, P > 0.05) were unchanged. Therefore, we hypothesized that decreased carbachol (CCH)-stimulated Cl- secretion in DSS-induced colitis could be attributed to a loss of Ca2+-activated Cl- channels (CaCC) in apical membranes of colonic epithelium. To establish this chemically-induced colitis, Balb/C mice were exposed to 4% DSS for five alternating weeks to stimulate a more moderate, chronic colitis. Upon completion of the protocol, whole thickness sections of colon were mounted in an Ussing chamber under voltage-clamp conditions. DSS-induced colitis demonstrated a complete inhibition of basolateral administration of CCH-stimulated Cl- secretion that actually displayed a reversal in polarity (15.40 ± 2.22 µA/cm2 vs. -2.47 ± 0.25 µA/cm2). Western blotting of potential CaCCs, quantified by densitometric analysis, demonstrated no change in bestrophin-2 and cystic fibrosis transmembrane regulator, whereas anoctamin-1 [ANO1, transmembrane protein 16A (TMEM16A)] was significantly downregulated (1.001 ± 0.13 vs. 0.510 ± 0.12, P < 0.05). Our findings indicate that decreased expression of TMEM16A in DSS-induced colitis contributes to the decreased Ca2+-activated Cl- secretion in murine colon.


Assuntos
Anoctamina-1/metabolismo , Cálcio/metabolismo , Cloretos/metabolismo , Colite/metabolismo , Colo/metabolismo , Regulação para Baixo/fisiologia , Animais , Bestrofinas/metabolismo , Carbacol/farmacologia , Canais de Cloreto/metabolismo , Colite/induzido quimicamente , Colo/efeitos dos fármacos , Fibrose Cística/metabolismo , Sulfato de Dextrana/farmacologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Receptor Muscarínico M3/metabolismo
4.
Basic Res Cardiol ; 111(5): 56, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27496159

RESUMO

Ion channels in smooth muscle control coronary vascular tone, but the identity of the potassium channels involved requires further investigation. The purpose of this study was to evaluate the functional role of KV1 channels on porcine coronary blood flow using the selective antagonist correolide. KV1 channel gene transcripts were found in porcine coronary arteries, with KCNA5 (encoding KV1.5) being most abundant (P < 0.001). Immunohistochemical staining demonstrated KV1.5 protein in the vascular smooth muscle layer of both porcine and human coronary arteries, including microvessels. Whole-cell patch-clamp experiments demonstrated significant correolide-sensitive (1-10 µM) current in coronary smooth muscle. In vivo studies included direct intracoronary infusion of vehicle or correolide into a pressure-clamped left anterior descending artery of healthy swine (n = 5 in each group) with simultaneous measurement of coronary blood flow. Intracoronary correolide (~0.3-3 µM targeted plasma concentration) had no effect on heart rate or systemic pressure, but reduced coronary blood flow in a dose-dependent manner (P < 0.05). Dobutamine (0.3-10 µg/kg/min) elicited coronary metabolic vasodilation and intracoronary correolide (3 µM) significantly reduced coronary blood flow at any given level of myocardial oxygen consumption (P < 0.001). Coronary artery occlusions (15 s) elicited reactive hyperemia and correolide (3 µM) reduced the flow volume repayment by approximately 30 % (P < 0.05). Taken together, these data support a major role for KV1 channels in modulating baseline coronary vascular tone and, perhaps, vasodilation in response to increased metabolism and transient ischemia.


Assuntos
Circulação Coronária/fisiologia , Vasos Coronários/metabolismo , Músculo Liso Vascular/metabolismo , Superfamília Shaker de Canais de Potássio/metabolismo , Animais , Imunofluorescência , Humanos , Immunoblotting , Técnicas de Patch-Clamp , Reação em Cadeia da Polimerase , Suínos
5.
Microcirculation ; 22(4): 315-25, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25808400

RESUMO

OBJECTIVE: Many types of vascular smooth muscle cells exhibit prominent KDR currents. These KDR currents may be mediated, at least in part, by KV1.5 channels, which are sensitive to inhibition by DPO-1. We tested the hypothesis that DPO-1-sensitive KDR channels regulate the tone and reactivity of resistance-sized vessels from rat brain (MCA) and skeletal muscle (GA). METHODS: Middle cerebral and gracilis arteries were isolated and subjected to three kinds of experimental analysis: (i) western blot/immunocytochemistry; (ii) patch clamp electrophysiology; and (iii) pressure myography. RESULTS: Western blot and immunocytochemistry experiments demonstrated KV1.5 immunoreactivity in arteries and smooth muscle cells isolated from them. Whole-cell patch clamp experiments revealed smooth muscle cells from resistance-sized arteries to possess a KDR current that was blocked by DPO-1. Resistance arteries constricted in response to increasing concentrations of DPO-1. DPO-1 enhanced constrictions to PE and serotonin in gracilis and middle cerebral arteries, respectively. When examining the myogenic response, we found that DPO-1 reduced the diameter at any given pressure. Dilations in response to ACh and SNP were reduced by DPO-1. CONCLUSION: We suggest that KV1.5, a DPO-1-sensitive KDR channel, plays a major role in determining microvascular tone and the response to vasoconstrictors and vasodilators.


Assuntos
Encéfalo/irrigação sanguínea , Canal de Potássio Kv1.5/metabolismo , Músculo Esquelético/irrigação sanguínea , Compostos Organofosforados/farmacologia , Resistência Vascular/efeitos dos fármacos , Animais , Masculino , Camundongos , Camundongos Knockout , Artéria Cerebral Média/metabolismo , Ratos , Ratos Sprague-Dawley , Vasodilatação/efeitos dos fármacos
6.
Channels (Austin) ; 8(3): 249-57, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24476761

RESUMO

We demonstrated previously that BK (K(Ca)1.1) channel activity (NP(o)) increases in response to bisphenol A (BPA). Moreover, BK channels containing regulatory ß1 subunits were more sensitive to the stimulatory effect of BPA. How BPA increases BK channel NPo remains mostly unknown. Estradiol activates BK channels by binding to an extracellular site, but neither the existence nor location of a BPA binding site has been demonstrated. We tested the hypothesis that an extracellular binding site is responsible for activation of BK channels by BPA. We synthesized membrane-impermeant BPA-monosulfate (BPA-MS) and used patch clamp electrophysiology to study channels composed of α or α + ß1 subunits in cell-attached (C-A), whole-cell (W-C), and inside-out (I-O) patches. In C-A patches, bath application of BPA-MS (100 µM) had no effect on the NP(o) of BK channels, regardless of their subunit composition. Importantly, however, subsequent addition of membrane-permeant BPA (100 µM) increased the NP(o) of both α and α + ß1 channels in C-A patches. The C-A data indicate that in order to alter BK channel NP(o), BPA must interact with the channel itself (or some closely associated partner) and diffusible messengers are not involved. In W-C patches, 100 µM BPA-MS activated current in cells expressingα subunits, whereas cells expressing α + ß1 subunits responded similarly to a log-order lower concentration (10 µM). The W-C data suggest that an extracellular activation site exists, but do not eliminate the possibility that an intracellular site may also be present. In I-O patches, where the cytoplasmic face was exposed to the bath, BPA-MS had no effect on the NP(o) of BK α subunits, but BPA increased it. BPA-MS increased the NP(o) of α + ß1 channels in I-O patches, but not as much as BPA. We conclude that BPA activates BK α via an extracellular site and that BPA-sensitivity is increased by the ß1 subunit, which may also constitute part of an intracellular binding site.


Assuntos
Compostos Benzidrílicos/metabolismo , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Subunidades beta do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Fenóis/metabolismo , Linhagem Celular , Membrana Celular/química , Membrana Celular/genética , Membrana Celular/metabolismo , Humanos , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/química , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/genética , Subunidades beta do Canal de Potássio Ativado por Cálcio de Condutância Alta/química , Subunidades beta do Canal de Potássio Ativado por Cálcio de Condutância Alta/genética , Potenciais da Membrana , Técnicas de Patch-Clamp , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...