Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 4689, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824148

RESUMO

Global warming will lead to significantly increased temperatures on earth. Plants respond to high ambient temperature with altered developmental and growth programs, termed thermomorphogenesis. Here we show that thermomorphogenesis is conserved in Arabidopsis, soybean, and rice and that it is linked to a decrease in the levels of the two macronutrients nitrogen and phosphorus. We also find that low external levels of these nutrients abolish root growth responses to high ambient temperature. We show that in Arabidopsis, this suppression is due to the function of the transcription factor ELONGATED HYPOCOTYL 5 (HY5) and its transcriptional regulation of the transceptor NITRATE TRANSPORTER 1.1 (NRT1.1). Soybean and Rice homologs of these genes are expressed consistently with a conserved role in regulating temperature responses in a nitrogen and phosphorus level dependent manner. Overall, our data show that root thermomorphogenesis is a conserved feature in species of the two major groups of angiosperms, monocots and dicots, that it leads to a reduction of nutrient levels in the plant, and that it is dependent on environmental nitrogen and phosphorus supply, a regulatory process mediated by the HY5-NRT1.1 module.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Regulação da Expressão Gênica de Plantas , Glycine max , Nitrogênio , Oryza , Fósforo , Raízes de Plantas , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Fósforo/metabolismo , Nitrogênio/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Raízes de Plantas/genética , Oryza/genética , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Glycine max/genética , Glycine max/crescimento & desenvolvimento , Glycine max/metabolismo , Nutrientes/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Temperatura Alta , Transportadores de Nitrato , Proteínas de Transporte de Ânions/metabolismo , Proteínas de Transporte de Ânions/genética , Temperatura , Fatores de Transcrição de Zíper de Leucina Básica
2.
J Exp Bot ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38863272

RESUMO

Copper (Cu) is a crucial micronutrient essential for the growth and development of plants. Rice exhibits remarkable resistance to Cu deficiency, but the underlying molecular mechanisms are not well understood. In this study, we reveal that the plant's ability to withstand Cu deficiency is orchestrated by a transcription factor known as OsSPL9. We have demonstrated that OsSPL9 functions as a central regulator of Cu homeostasis. Disrupting OsSPL9 through knockout significantly reduces the plant's tolerance to Cu deficiency. As a result, the spl9 mutants exhibit reduced Cu accumulation in their shoots when compared to wild-type plants. This reduction is linked to a disruption in the transport of Cu from older leaves to younger ones. Furthermore, we show that OsSPL9 directly binds to GTAC motifs in the promoters of key genes involved in Cu uptake and transport, as well as Cu-miRNAs, and enhances their transcription under Cu-deficient conditions. Overall, our findings shed light on the molecular basis of rice resilience to Cu deficiency stress and place the transcription factor OsSPL9 as a master regulator of this response.

3.
Plant J ; 117(6): 1639-1641, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38488207
4.
J Exp Bot ; 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38551389

RESUMO

Nutrient availability profoundly influences plant root system architecture, which critically determines crop productivity. While Arabidopsis has provided important insights into the genetic responses to nutrient deficiency, translating this knowledge to crops, particularly wheat, remains a subject of inquiry. Here, examining a diverse wheat population under varying nitrogen (N), phosphorus (P), potassium (K), and iron (Fe) levels, we uncover a spectrum of root responses, spanning from growth inhibition to stimulation, highlighting genotype-specific strategies. Furthermore, we reveal a nuanced interplay between macronutrient deficiency (N, P, and K) and Fe availability, emphasizing the central role of Fe in modulating root architecture. Through genome-wide association mapping, we identify 11 quantitative trait loci underlying root traits under varying nutrient availabilities, including homologous genes previously validated in Arabidopsis, supporting our findings. In addition, utilizing transcriptomics, ROS imaging, and antioxidant treatment, we uncover that wheat root growth inhibition by nutrient deficiency is attributed to ROS accumulation, akin to the role of ROS in governing Arabidopsis root responses to nutrient deficiency. Therefore, our study reveals the conservation of molecular and physiological mechanisms between Arabidopsis and wheat to adjust root growth to nutrient availability, paving the way for targeted crop improvement strategies aimed at increasing nutrient use efficiency.

5.
Plant J ; 117(6): 1716-1727, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38361338

RESUMO

Plant roots release phytochemicals into the soil environment to influence nutrient availability and uptake. Arabidopsis thaliana roots release phenylpropanoid coumarins in response to iron (Fe) deficiency, likely to enhance Fe uptake and improve plant health. This response requires sufficient phosphorus (P) in the root environment. Nonetheless, the regulatory interplay influencing coumarin production under varying availabilities of Fe and P is not known. Through genome-wide association studies, we have pinpointed the influence of the ABC transporter G family member, PDR9, on coumarin accumulation and trafficking (homeostasis) under combined Fe and P deficiency. We show that genetic variation in the promoter of PDR9 regulates its expression in a manner associated with coumarin production. Furthermore, we find that MYB63 transcription factor controls dedicated coumarin production by regulating both COUMARIN SYNTHASE (COSY) and FERULOYL-CoA 6'-HYDROXYLASE 1 (F6'H1) expression while orchestrating secretion through PDR9 genes under Fe and P combined deficiency. This integrated approach illuminates the intricate connections between nutrient signaling pathways in coumarin response mechanisms.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cumarínicos/metabolismo , Regulação da Expressão Gênica de Plantas , Estudo de Associação Genômica Ampla , Homeostase , Raízes de Plantas/genética , Raízes de Plantas/metabolismo
6.
Plant Cell Environ ; 47(5): 1526-1542, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38251320

RESUMO

Zinc (Zn) deficiency is the most prevalent micronutrient disorder in rice and leads to delayed development and decreased yield. Nevertheless, despite its primary importance, how rice responds to Zn deficiency remains poorly understood. This study presents genetic evidence supporting the crucial role of OsbZIP48 in regulating rice's response to Zn deficiency, consistent with earlier findings in the model plant Arabidopsis. Genetic inactivation of OsbZIP48 in rice seedlings resulted in heightened sensitivity to Zn deficiency and reduced Zn translocation from roots to shoots. Consistently, OsbZIP48 was constitutively expressed in roots, slightly induced by Zn deficiency in shoots and localized into nuclei induced by Zn deficiency. Comparative transcriptome analysis of the wild-type plants and osbzip48 mutant grown under Zn deficiency enabled the identification of OsbZIP48 target genes, including key Zn transporter genes (OsZIP4 and OsZIP8). We demonstrated that OsbZIP48 controlled the expressions of these genes by directly binding to their promoters, specifically to the Zn deficiency response element motif. This study establishes OsbZIP48 as a critical transcription factor in rice's response to Zn deficiency, offering valuable insights for developing Zn-biofortified rice varieties to combat global Zn limitation.


Assuntos
Arabidopsis , Oryza , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Oryza/metabolismo , Zinco/metabolismo , Perfilação da Expressão Gênica , Arabidopsis/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
7.
Plant J ; 117(6): 1764-1780, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37921230

RESUMO

Efficiently regulating growth to adapt to varying resource availability is crucial for organisms, including plants. In particular, the acquisition of essential nutrients is vital for plant development, as a shortage of just one nutrient can significantly decrease crop yield. However, plants constantly experience fluctuations in the presence of multiple essential mineral nutrients, leading to combined nutrient stress conditions. Unfortunately, our understanding of how plants perceive and respond to these multiple stresses remains limited. Unlocking this mystery could provide valuable insights and help enhance plant nutrition strategies. This review focuses specifically on the regulation of phosphorous homeostasis in plants, with a primary emphasis on recent studies that have shed light on the intricate interactions between phosphorous and other essential elements, such as nitrogen, iron, and zinc, as well as non-essential elements like aluminum and sodium. By summarizing and consolidating these findings, this review aims to contribute to a better understanding of how plants respond to and cope with combined nutrient stress.


Assuntos
Minerais , Plantas , Ferro , Fósforo , Nutrientes
8.
Trends Plant Sci ; 29(3): 303-318, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37833181

RESUMO

The green revolution successfully increased agricultural output in the early 1960s by relying primarily on three pillars: plant breeding, irrigation, and chemical fertilization. Today, the need to reduce the use of chemical fertilizers, water scarcity, and future environmental changes, together with a growing population, requires innovative strategies to adapt to a new context and prevent food shortages. Therefore, scientists from around the world are directing their efforts to breed crops for future environments to sustainably produce more nutritious food. Herein, we propose scientific avenues to be reinforced in selecting varieties, including crop wild relatives, either for monoculture or mixed cropping systems, taking advantage of plant-microbial interactions, while considering the diversity of organisms associated with crops and unlocking combinatorial nutritional stresses.


Assuntos
Produtos Agrícolas , Melhoramento Vegetal , Produtos Agrícolas/genética , Agricultura , Adaptação Fisiológica , Fertilizantes
9.
Curr Biol ; 33(9): 1778-1786.e5, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-36963384

RESUMO

Nutrient sensing and signaling are essential for adjusting growth and development to available resources. Deprivation of the essential mineral phosphorus (P) inhibits root growth.1 The molecular processes that sense P limitation to trigger early root growth inhibition are not known yet. Target of rapamycin (TOR) kinase is a central regulatory hub in eukaryotes to adapt growth to internal and external nutritional cues.2,3 How nutritional signals are transduced to TOR to control plant growth remains unclear. Here, we identify Arabidopsis-root-specific kinase 1 (ARSK1), which attenuates initial root growth inhibition in response to P limitation. We demonstrate that ARSK1 phosphorylates and stabilizes the regulatory-associated protein of TOR 1B (RAPTOR1B), a component of the TOR complex 1, to adjust root growth to P availability. These findings uncover signaling components acting upstream of TOR to balance growth to P availability.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fosfatos/metabolismo , Transdução de Sinais/fisiologia , Sirolimo/farmacologia , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo
10.
Trends Plant Sci ; 28(5): 537-543, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36740490

RESUMO

Greenhouse gas (GHG) emissions have created a global climate crisis which requires immediate interventions to mitigate the negative effects on all aspects of life on this planet. As current agriculture and land use contributes up to 25% of total GHG emissions, plant scientists take center stage in finding possible solutions for a transition to sustainable agriculture and land use. In this article, the PlantACT! (Plants for climate ACTion!) initiative of plant scientists lays out a road map of how and in which areas plant scientists can contribute to finding immediate, mid-term, and long-term solutions, and what changes are necessary to implement these solutions at the personal, institutional, and funding levels.


Assuntos
Agricultura , Gases de Efeito Estufa , Gases de Efeito Estufa/análise , Plantas , Mudança Climática , Efeito Estufa
11.
Molecules ; 27(23)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36500461

RESUMO

Anthocyanins are a group of pigments responsible for the red-blue color in plant parts, and have potential for health benefits and pharmaceutical ingredients. To evaluate whether anthocyanin concentrations in five purple rice varieties could be varied by water condition, plants were grown in waterlogged and aerobic (well-drained) soil. Grain anthocyanin concentration and grain yield were measured at maturity, while leaf anthocyanin concentrations were measured at booting and flowering stages. Four varieties grown under the waterlogged condition had 2.0−5.5 times higher grain anthocyanin than in the aerobic condition. There was a positive relationship between grain and leaf anthocyanin at booting in the waterlogged condition (r = 0.90, p < 0.05), while grain and leaf anthocyanin were positively correlated at flowering in both the waterlogged (r = 0.88, p < 0.05) and aerobic (r = 0.97, p < 0.01) conditions. The results suggest that water management should be adopted as a practical agronomic tool for improving the anthocyanin concentration of purple rice for specialist markets, but the specific responses between rice varieties to water management should be carefully considered.


Assuntos
Oryza , Antocianinas , Solo , Grão Comestível , Folhas de Planta
12.
Front Plant Sci ; 13: 1037273, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36507455

RESUMO

Endophytic fungi are known to enhance plant growth and performance under salt stress. The current study investigated the growth, as well as biochemical and molecular properties of Phoenix dactylifera colonized with the mutualistic fungus Piriformospora indica, under control and salinity stress. Our findings indicated an increase in the plant biomass, lateral root density, and chlorophyll content of P. indica-colonized plants under both normal and salt stress conditions. Furthermore, there was a decline in the inoculated plants leaf and root Na+/K+ ratio. The colonization enhanced the levels of antioxidant enzymes such as catalase, superoxide dismutase, and peroxidase in plants. Increased ionic content of Zn and P were also found in salt-stressed date palm. The fungus colonization was also associated with altered expression levels of essential Na+ and K+ ion channels in roots like HKT1;5 and SOS1 genes. This alteration improved plant growth due to their preservation of Na+ and K+ ions balanced homeostasis under salinity stress. Moreover, it was confirmed that RSA1 and LEA2 genes were highly expressed in salt-stressed and colonized plant roots and leaves, respectively. The current study exploited P. indica as an effective natural salt stress modulator to ameliorate salinity tolerance in plants.

13.
Plants (Basel) ; 11(22)2022 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-36432795

RESUMO

Owing to the impending global scarcity of high-quality sources of phosphate (Pi) fertilizers, lowering its use in crop production requires improved insights into factors stimulating Pi uptake from the soil as well as the efficacious use by plants. Following decades of extensive research on plants' adaptation to Pi deficiency with mitigated success in the field, a better understanding of how plants exposed to zinc (Zn) deficiency accumulate much more Pi provides a novel strategy in comparison to when plants are grown in Zn-rich soils. In this context, we review current knowledge and molecular events involved in the Pi and Zn signaling crosstalk in plants that will bear great significance for agronomical and rudimentary research applications.

14.
Front Plant Sci ; 13: 1027828, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36426158

RESUMO

Genetic modification of crops has substantially focused on improving traits for desirable outcomes. It has resulted in the development of crops with enhanced yields, quality, and tolerance to biotic and abiotic stresses. With the advent of introducing favorable traits into crops, biotechnology has created a path for the involvement of genetically modified (GM) crops into sustainable food production systems. Although these plants heralded a new era of crop production, their widespread adoption faces diverse challenges due to concerns about the environment, human health, and moral issues. Mitigating these concerns with scientific investigations is vital. Hence, the purpose of the present review is to discuss the deployment of GM crops and their effects on sustainable food production systems. It provides a comprehensive overview of the cultivation of GM crops and the issues preventing their widespread adoption, with appropriate strategies to overcome them. This review also presents recent tools for genome editing, with a special focus on the CRISPR/Cas9 platform. An outline of the role of crops developed through CRSIPR/Cas9 in achieving sustainable development goals (SDGs) by 2030 is discussed in detail. Some perspectives on the approval of GM crops are also laid out for the new age of sustainability. The advancement in molecular tools through plant genome editing addresses many of the GM crop issues and facilitates their development without incorporating transgenic modifications. It will allow for a higher acceptance rate of GM crops in sustainable agriculture with rapid approval for commercialization. The current genetic modification of crops forecasts to increase productivity and prosperity in sustainable agricultural practices. The right use of GM crops has the potential to offer more benefit than harm, with its ability to alleviate food crises around the world.

15.
16.
Curr Biol ; 32(20): 4493-4500.e4, 2022 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-36075219

RESUMO

Elevated atmospheric CO2 enhances photosynthetic rate,1 thereby increasing biomass production in plants. Nevertheless, high CO2 reduces the accumulation of essential nutrients2 such as phosphorus (P),3 which are required for photosynthetic processes and plant growth. How plants ensure enhanced growth despite meager P status remains enigmatic. In this study, we utilize genome-wide association analysis in Arabidopsis thaliana to identify a P transporter, PHT4;3, which mediates the reduction of P in chloroplasts at high CO2. Decreasing chloroplastic P fine-tunes the accumulation of a sugar-P metabolite, phytic acid, to support plant growth. Furthermore, we demonstrate that this adaptive mechanism is conserved in rice. Our results establish a mechanistic framework for sustainable food production against the backdrop of soaring CO2 levels across the world.


Assuntos
Arabidopsis , Fósforo , Fósforo/metabolismo , Dióxido de Carbono/metabolismo , Ácido Fítico/metabolismo , Estudo de Associação Genômica Ampla , Cloroplastos , Arabidopsis/metabolismo , Plantas/metabolismo , Homeostase , Açúcares/metabolismo
17.
Curr Biol ; 32(13): R725-R727, 2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35820378

RESUMO

Climate change adversely affects plant nutrition, which serves as a major hurdle in the production of enough nutritious food to meet the needs of the growing global population. Here, we discuss how various climatic stressors impact nutrient homeostasis and how natural variation studies can yield resilient crop production systems to ensure future food security.


Assuntos
Mudança Climática , Produtos Agrícolas , Produção Agrícola
18.
Planta ; 256(2): 23, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35767117

RESUMO

MAIN CONCLUSION: This minireview details the impact of iron-phosphate and zinc-phosphate interactions in plants and provides perspectives for further areas of research regarding nutrient homeostasis. Iron (Fe) and zinc (Zn) are among the most important micronutrients for plant growth and have numerous implications for human health and agriculture. While plants have developed efficient uptake and transport mechanisms for Fe and Zn, emerging research has shown that the availability of other nutrients in the environment influences the homeostasis of Fe and Zn within plants. In this minireview, we present the current knowledge regarding homeostatic interactions of Fe and Zn with the macronutrient phosphorous (P) and the resulting physiological responses to combined deficiencies of these nutrients. Fe and P interactions have been shown to influence root development, photosynthesis, and biological processes aiding Fe uptake. Zn and P interactions also influence root growth, and coordination of Zn-dependent transcriptional regulation contributes to phosphate (Pi) transport in the plant. Understanding homeostatic interactions among these different nutrients is of critical importance to obtain a more complete understanding of plant nutrition in complex soil environments.


Assuntos
Ferro , Fosfatos , Agricultura/métodos , Homeostase , Plantas , Zinco
19.
New Phytol ; 234(5): 1753-1769, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35288933

RESUMO

As excess iron (Fe) is toxic, uptake of this essential micronutrient must be tightly controlled. Previous studies have shown that Oryza sativa (rice) POSITIVE REGULATOR OF IRON HOMEOSTASIS1 (OsPRI1) acts upstream of the iron-related transcription factor 2 (OsIRO2) and OsIRO3 to positively regulate root-to-shoot Fe translocation. However, as expression of OsPRI1 is constitutive it is unclear how the Fe-deficiency response is turned off to prevent toxicity when Fe is sufficient. The bHLH transcription factor OsbHLH061 interacts with OsPRI1, and this study used molecular, genetics, biochemical and physiological approaches to functionally characterise OsbHLH061 and how it affects Fe homeostasis. OsbHLH061 knockout or overexpression lines increase or decrease Fe accumulation in shoots respectively. Mechanistically, OsbHLH061 expression is upregulated by high Fe, and physically interacts with OsPRI1, the OsbHLH061-OsPRI1 complex recruits TOPLESS/TOPLESS-RELATED (OsTPL/TPR) co-repressors to repress OsIRO2 and OsIRO3 expression. The OsbHLH061 ethylene-responsive element-binding factor-associated amphiphilic repression (EAR) motif is required for this transcriptional repression activity. These results define a functional OsTPL/TPR-OsbHLH061-OsPRI1-OsIRO2/3 module that negatively controls long-distance transport of Fe in plants for adaptation to changing Fe environments and maintain Fe homeostasis in rice.


Assuntos
Oryza , Regulação da Expressão Gênica de Plantas , Homeostase , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
20.
Trends Plant Sci ; 27(5): 502-509, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34848140

RESUMO

Photosynthetic organisms convert light energy into chemical energy stored in carbohydrates. To perform this process, an adequate supply of essential mineral elements, such as iron, is required in the chloroplast. Because iron plays a crucial role during electron transport and chlorophyll formation, iron deficiency alters photosynthesis and promotes chlorosis, or the yellowing of leaves. Intriguingly, iron deficiency-induced chlorosis can be reverted by the depletion of other micronutrients [i.e., manganese (Mn)] or macronutrients [i.e., sulfur (S) or phosphorus (P)], raising the question of how plants integrate nutrient status to control photosynthesis. Here, we review how improving our understanding of the complex relationship between nutrient homeostasis and photosynthesis has great potential for crop improvement.


Assuntos
Anemia Hipocrômica , Deficiências de Ferro , Clorofila , Ferro , Minerais , Nutrientes , Fotossíntese , Folhas de Planta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...