Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mikrochim Acta ; 191(6): 335, 2024 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760484

RESUMO

The release of tire wear substances in the environment is raising concerns about potential impacts on aquatic ecosystems. The purpose of this study was to develop a quick and inexpensive screening test for the following tire wear substances: 6-phenylphenyldiamine quinone (6-PPD quinone), hexamethoxymethylmelamine (HMMM), 1-3-diphenylguanidine (1,3-DPG), and melamine. A dual strategy consisting of nanogold (nAu) signal intensity and the plasmonic ruler principle was used based on the spectral shift from the unaggregated free-form nAu from 525 nm to aggregated nAu at higher wavelengths. The shift in resonance corresponded to the relative sizes of the tire wear substances at the surface of nAu: 6-PPD (560 nm), HMMM (590 nm), 1,3-DPG (620 nm), and melamine (660 nm) in a concentration-dependent manner. When present in mixtures, a large indiscriminate band between 550 and 660 nm with a maximum corresponding to the mean intermolecular distance of 0.43 nm from the tested individual substances suggests that all compounds indiscriminately interacted at the surface of nAu. An internal calibration methodology was developed for mixtures and biological extracts from mussels and biofilms and revealed a proportional increase in absorbance at the corresponding resonance line for each test compound. Application of this simple and quick methodology revealed the increased presence of melamine and HMMM compounds in mussels and biofilms collected at urban sites (downstream city, road runoffs), respectively. The data also showed that treated municipal effluent decreased somewhat melamine levels in mussels.


Assuntos
Ouro , Nanopartículas Metálicas , Triazinas , Ouro/química , Nanopartículas Metálicas/química , Triazinas/análise , Triazinas/química , Ressonância de Plasmônio de Superfície/métodos , Poluentes Químicos da Água/análise
2.
J Xenobiot ; 13(4): 761-774, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38132709

RESUMO

Plastic-based contamination has become a major cause of concern as it pervades many environments such as air, water, sediments, and soils. This study sought to examine the presence of microplastics (MPs) and nanoplastics (NPs) in freshwater mussels placed at rainfall/street runoff overflows, downstream (15 km) of the city centre of Montréal, and 8 km downstream of a municipal effluent dispersion plume. MPs and NPs were determined using flow cytometry and size exclusion chromatography using fluorescence detection. Following 3 months of exposure during the summer season, mussels contained elevated amounts of both MPs and NPs. The rainfall overflow and downstream of the city centre were the most contaminated sites. Lipid peroxidation, metallothioneins, and protein aggregates (amyloids) were significantly increased at the most contaminated sites and were significantly correlated with NPs in tissues. Based on the levels of MPs and NPs in mussels exposed to municipal effluent, wastewater treatment plants appear to mitigate plastic contamination albeit not completely. In conclusion, the data support the hypothesis that mussels placed in urbanized areas are more contaminated by plastics, which are associated with oxidative damage. The highest responses observed at the overflow site suggest that tire wear and/or asphalt (road) erosion MPs/NPs represent important sources of contamination for the aquatic biota.

3.
Sci Total Environ ; 803: 150001, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34492493

RESUMO

Copper oxide nanoparticles (CuO-NPs) have been increasingly released in aquatic ecosystems over the past decades as they are used in many applications. Cu toxicity to different organisms has already been highlighted in the literature, however toxicity mechanisms of the nanoparticulate form remain unclear. Here, we investigated the effect, transfer and localization of CuO-NPs compared to Cu salt on the aquatic plant Myriophyllum spicatum, an ecotoxicological model species with a pivotal role in freshwater ecosystems, to establish a clear mode of action. Plants were exposed to 0.5 mg/L Cu salt, 5 and 70 mg/L CuO-NPs during 96 h and 10 days. Several morphological and physiological endpoints were measured. Cu salt was found more toxic than CuO-NPs to plants based on all the measured endpoints despite a similar internal Cu concentration demonstrated via Cu mapping by micro particle-induced X-ray emission (µPIXE) coupled to Rutherford backscattering spectroscopy (RBS). Biomacromolecule composition investigated by FTIR converged between 70 mg/L CuO-NPs and Cu salt treatments after 10 days. This demonstrates that the difference of toxicity comes from a sudden massive Cu2+ addition from Cu salt similar to an acute exposure, versus a progressive leaching of Cu2+ from CuO-NPs representing a chronic exposure. Understanding NP toxicity mechanisms can help in the future conception of safer by design NPs and thus diminishing their impact on both the environment and humans.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Poluentes Químicos da Água , Cobre/análise , Cobre/toxicidade , Ecossistema , Humanos , Nanopartículas Metálicas/toxicidade , Óxidos , Análise Espectral , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
4.
Chemosphere ; 245: 125552, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31846788

RESUMO

Genotypic variability has been considered for years as a key attribute in species adaptation to new environments. It has been extensively studied in a context of chemical resistance, but remains poorly studied in response to chemical exposure in a context of global change. As aquatic ecosystems are particularly affected by environmental changes, we aimed to study how genotypic variability could inflect the sensitivity of aquatic plants to chemicals. Seven genotypes of Myriophyllum spicatum were exposed to three copper concentrations at 0, 0.15 and 0.5 mg/L. The sensitivity of the different genotypes was assessed through several endpoints such as relative growth rate (RGR) and morphological traits, as well as physiological markers, such as plant biomacromolecular composition. Our results showed that genotypes exhibited significant differences in their life-history traits in absence of chemical contamination. Some trait syndromes were observed, and three growth strategies were identified: (1) biomass production and main shoot elongation, (2) dry matter storage with denser whorls to promote resource conservation and (3) lateral shoot production. An up to eightfold difference in sensitivity for growth-related endpoints was observed among genotypes. Differences in sensitivity were partly attributed to morphological life-history traits. Our results confirm that genotypic variability can significantly affect M. spicatum sensitivity to Cu, and may influence the outcomes of laboratory testing based on the study of one single genotype. We recommend including genotypic variation as an assessment factor in ecological risk assessment and to study this source of variability more in depth as a possible driver of ecosystem resilience.


Assuntos
Cobre/toxicidade , Saxifragales/fisiologia , Poluentes Químicos da Água/toxicidade , Biomassa , Ecossistema , Genótipo , Magnoliopsida/crescimento & desenvolvimento , Magnoliopsida/fisiologia , Plantas , Medição de Risco
5.
Aquat Toxicol ; 211: 29-37, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30913512

RESUMO

To limit anthropogenic impact on ecosystems, regulations have been implemented along with global awareness that human activities are harmful to the environment. Ecological risk assessment (ERA) is the main procedure which allows to assess potential impacts of stressors on the environment as a result of human activities. ERA is typically implemented through different steps of laboratory testing. The approaches taken for ERA evolve along with scientific knowledge, to improve predictions on ecological risks for ecosystems. We here address the importance of intraspecific variability as a potential source of error in the laboratory evaluation of pollutants. To answer this question, three aquatic macrophyte species with different life-history traits but with their leaves directly in contact with the water were chosen; Lemna minor and Myriophyllum spicatum, two OECD model species, and Ceratophyllum demersum. For each species, three or four genotypes were exposed to 7-8 copper concentrations (up to 1.9 mg/L, 2 mg/L or 36 mg/L for C. demersum, L. minor and M. spicatum, respectively). To assess species sensitivity, growth-related endpoints such as Relative Growth Rate (RGR), based either on biomass production or on length/frond production, and chlorophyll fluorescence Fv/Fm, were measured. For each endpoint, the effective concentration 50% (EC50) was calculated. Almost all endpoints were affected by Cu exposure, except Fv/Fm of M. spicatum, and resulted in significant differences among genotypes for Cu sensitivity. Genotypes of L. minor exhibited up to 35% of variation in EC50 values based on Fv/Fm, showing differential sensivity among genotypes. Significant differences in EC50 values were found for RGR based on length for M. spicatum, with up to 72% of variation. Finally, C. demersum demonstrated significant sensitivity differences among genotypes with up to 78% variation for EC50 based on length. Overall, interspecific variation was higher than intraspecific variation, and explained 77% of the variation found among genotypes for RGR based on biomass, and 99% of the variation found for Fv/Fm. Our results highlight that depending on the endpoint, sensitivity can vary greatly within a species, and that pollutant- and species-specific endpoints should be considered in ERA.


Assuntos
Araceae/efeitos dos fármacos , Araceae/genética , Cobre/toxicidade , Magnoliopsida/efeitos dos fármacos , Magnoliopsida/genética , Poluentes Químicos da Água/toxicidade , Araceae/crescimento & desenvolvimento , Biomassa , Ecossistema , Monitoramento Ambiental , Genótipo , Magnoliopsida/crescimento & desenvolvimento , Medição de Risco , Especificidade da Espécie
6.
Environ Sci Pollut Res Int ; 26(14): 14106-14115, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30852756

RESUMO

Environmentally mediated sensitivity of Lemna minor to copper (Cu) was evaluated for the first time in three experiments: the effects of two levels of nutrient concentration, light irradiance or Cu pre-exposure were tested. Various Cu concentrations (ranging from 0.05 to 0.25 mg/L) were used to assess the sensitivity of L. minor to this metal, using one common strain previously acclimatized to two different levels of light intensity, nutrient enrichment and Cu pre-exposure. Our results showed a phenotypic plastic response of the relative growth rates based on frond number and fresh mass production, and maximum quantum yield of photosystem II (Fv/Fm). Growth was affected by the three environmental conditions both prior and during Cu exposure, whereas Fv/Fm was mostly affected during Cu exposure. Copper significantly influenced all the parameters measured in the three experiments. Environmental conditions significantly modified L. minor sensitivity to Cu in all experiments, with up to twofold difference depending on the treatment. Growth rate was the parameter that was most impacted. Our study revealed for the first time the existence of phenotypic plasticity in L. minor sensitivity to chemical contamination, and implies that environmental context needs to be taken into account for a relevant risk assessment.


Assuntos
Araceae/efeitos dos fármacos , Araceae/fisiologia , Cobre/toxicidade , Poluentes Químicos da Água/toxicidade , Aclimatação , Cobre/administração & dosagem , Ecotoxicologia/métodos , Luz , Fenótipo , Complexo de Proteína do Fotossistema II/metabolismo , Poluentes Químicos da Água/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...