Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oncogene ; 34(42): 5383-94, 2015 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-25619833

RESUMO

In the present study, we have assessed whether a putative calcium channel α2δ2 auxiliary subunit (CACNA2D2 gene) could be involved in prostate cancer (PCA) progression. We therefore carried out experiments to determine whether this protein is expressed in PCA LNCaP cells and in PCA tissues, and whether its expression may be altered during cancer development. In addition, we evaluated the influence on cell proliferation of overexpressing or downregulating this subunit. In vitro experiments show that α2δ2 subunit overexpression is associated with increased cell proliferation, alterations of calcium homeostasis and the recruitment of a nuclear factor of activated T-cells pathway. Furthermore, we carried out in vivo experiments on immuno-deficient nude mice in order to evaluate the tumorigenic potency of the α2δ2 subunit. We show that α2δ2-overexpressing PCA LNCaP cells are more tumorigenic than control LNCaP cells when injected into nude mice. In addition, gabapentin, a ligand of α2δ2, reduces tumor development in LNCaP xenografts. Finally, we show that the action of α2δ2 on tumor development occurs not only through a stimulation of proliferation, but also through a stimulation of angiogenesis, via an increased secretion of vascular endothelial growth factor in cells overexpressing α2δ2.


Assuntos
Canais de Cálcio/fisiologia , Proliferação de Células , Transformação Celular Neoplásica , Neovascularização Patológica/etiologia , Neoplasias da Próstata/etiologia , Animais , Cálcio/metabolismo , Canais de Cálcio/genética , Linhagem Celular Tumoral , Homeostase , Humanos , Masculino , Camundongos , Neoplasias da Próstata/irrigação sanguínea , Neoplasias da Próstata/patologia , Fator A de Crescimento do Endotélio Vascular/metabolismo
2.
Cell Death Dis ; 1: e75, 2010 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-21364678

RESUMO

The molecular nature of calcium (Ca(2+))-dependent mechanisms and the ion channels having a major role in the apoptosis of cancer cells remain a subject of debate. Here, we show that the recently identified Orai1 protein represents the major molecular component of endogenous store-operated Ca(2+) entry (SOCE) in human prostate cancer (PCa) cells, and constitutes the principal source of Ca(2+) influx used by the cell to trigger apoptosis. The downregulation of Orai1, and consequently SOCE, protects the cells from diverse apoptosis-inducing pathways, such as those induced by thapsigargin (Tg), tumor necrosis factor α, and cisplatin/oxaliplatin. The transfection of functional Orai1 mutants, such as R91W, a selectivity mutant, and L273S, a coiled-coil mutant, into the cells significantly decreased both SOCE and the rate of Tg-induced apoptosis. This suggests that the functional coupling of STIM1 to Orai1, as well as Orai1 Ca(2+)-selectivity as a channel, is required for its pro-apoptotic effects. We have also shown that the apoptosis resistance of androgen-independent PCa cells is associated with the downregulation of Orai1 expression as well as SOCE. Orai1 rescue, following Orai1 transfection of steroid-deprived cells, re-established the store-operated channel current and restored the normal rate of apoptosis. Thus, Orai1 has a pivotal role in the triggering of apoptosis, irrespective of apoptosis-inducing stimuli, and in the establishment of an apoptosis-resistant phenotype in PCa cells.


Assuntos
Apoptose , Canais de Cálcio/metabolismo , Neoplasias da Próstata/metabolismo , Substituição de Aminoácidos , Antineoplásicos/uso terapêutico , Cálcio/metabolismo , Canais de Cálcio/genética , Canais de Cálcio/fisiologia , Linhagem Celular Tumoral , Cisplatino/uso terapêutico , Humanos , Masculino , Proteínas de Membrana/metabolismo , Mutação , Proteínas de Neoplasias/metabolismo , Proteína ORAI1 , Fenótipo , Neoplasias da Próstata/tratamento farmacológico , Molécula 1 de Interação Estromal , Tapsigargina/uso terapêutico , Fator de Necrose Tumoral alfa/uso terapêutico
3.
Oncogene ; 28(15): 1792-806, 2009 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-19270724

RESUMO

Accumulating data point to K(+) channels as relevant players in controlling cell cycle progression and proliferation of human cancer cells, including prostate cancer (PCa) cells. However, the mechanism(s) by which K(+) channels control PCa cell proliferation remain illusive. In this study, using the techniques of molecular biology, biochemistry, electrophysiology and calcium imaging, we studied the expression and functionality of intermediate-conductance calcium-activated potassium channels (IK(Ca1)) in human PCa as well as their involvement in cell proliferation. We showed that IK(Ca1) mRNA and protein were preferentially expressed in human PCa tissues, and inhibition of the IK(Ca1) potassium channel suppressed PCa cell proliferation. The activation of IK(Ca1) hyperpolarizes membrane potential and, by promoting the driving force for calcium, induces calcium entry through TRPV6, a cation channel of the TRP (Transient Receptor Potential) family. Thus, the overexpression of the IK(Ca1) channel is likely to promote carcinogenesis in human prostate tissue.


Assuntos
Cálcio/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/fisiologia , Neoplasias da Próstata/patologia , Benzimidazóis/farmacologia , Canais de Cálcio/fisiologia , Linhagem Celular Tumoral , Proliferação de Células , Inibidor de Quinase Dependente de Ciclina p21/análise , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p27 , Fase G1 , Humanos , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/análise , Peptídeos e Proteínas de Sinalização Intracelular/análise , Masculino , Potenciais da Membrana , Neoplasias da Próstata/metabolismo , RNA Mensageiro/análise , Proteínas S100/análise , Canais de Cátion TRPV/fisiologia , Proteína Supressora de Tumor p53/fisiologia
4.
J Neuroendocrinol ; 20(5): 535-48, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18363807

RESUMO

Fourteen-day-old rat pituitary tissue represents an attractive model for studying cell population dynamics, particularly of gonadotrophs. Prolonged three-dimensional culture in serum- and hormone-free medium causes a striking decline in somatotroph abundance but a several-fold rise in monohormonal LH beta-positive cell number, whereas bihormonal gonadotrophs almost disappear. In the present study, we investigated whether these changes are inter-related by examining the effects of growth hormone-releasing hormone (GHRH) and glucocorticoids, two protagonist regulators of somatotrophs. Cells were identified by single cell reverse transcriptase-polymerase chain reaction (RT-PCR) and immunofluorescence. Supplementation of the cultures for 2 weeks with GHRH (1 nm) did not augment the proportion of somatotrophs, but expanded the nonhormonal cell population. GHRH reduced the proportion of monohormonal luteinising hormone (LH)beta mRNA positive cells to approximately 50% of control, although the effect was not seen when these cells were visualised by immunostaining. Supplementation of the cultures with dexamethasone (4 nM) for 3 weeks partially rescued LH beta/follicle-stimulating hormone beta cells and fully rescued the GH mRNA cells in parallel with a decline in nonhormonal cell abundance, but strongly reduced bromodeoxyuridine labelling of GH-immunoreactive cells. As studied by patch-clamp single cell RT-PCR at the start of culture, GHRH caused an acute rise in intracellular [Ca(2+)] in some monohormonal GH cells, but at a higher incidence in cells expressing LH beta mRNA, alone or in combination with GH mRNA and/or pro-opiomelanocortin (POMC) mRNA. The present data suggest that, in the 14-day-old rat pituitary, the majority of GHRH target cells are cells expressing LH beta mRNA alone or in combination with GH and/or POMC mRNA. The data show co-regulation of gonadotroph and somatotroph population sizes by glucocorticoids and GHRH, with the former preserving bihormonal gonadotrophs and the latter repressing LH beta-only cell abundance. GHRH may not expand the somatotroph population unless glucocorticoid hormone is present to maintain terminal differentiation.


Assuntos
Subunidade beta do Hormônio Folículoestimulante/metabolismo , Glucocorticoides/farmacologia , Gonadotrofos/citologia , Hormônio Liberador de Hormônio do Crescimento/farmacologia , Hormônio Luteinizante Subunidade beta/metabolismo , Hipófise/citologia , Somatotrofos/citologia , Fatores Etários , Animais , Cálcio/metabolismo , Agregação Celular , Contagem de Células , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Dexametasona/farmacologia , Feminino , Subunidade beta do Hormônio Folículoestimulante/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Gonadotrofos/efeitos dos fármacos , Gonadotrofos/metabolismo , Hormônio do Crescimento/genética , Hormônio do Crescimento/metabolismo , Hormônio Luteinizante Subunidade beta/genética , Hipófise/efeitos dos fármacos , Hipófise/metabolismo , Pró-Opiomelanocortina/genética , Pró-Opiomelanocortina/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Somatotrofos/efeitos dos fármacos , Somatotrofos/metabolismo
5.
Endocr Relat Cancer ; 12(2): 335-49, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15947107

RESUMO

Neuroendocrine (NE) differentiation of prostate epithelial/basal cells is a hallmark of advanced, androgen-independent prostate cancer, for which there is no successful therapy. Here we report for the first time on alterations in regulatory volume decrease (RVD) and its key determinant, swelling-activated Cl- current (I(Cl,swell)), associated with NE differentiation of androgen-dependent LNCaP prostate cancer epithelial cells. NE-differentiating regimens, namely, chronic cAMP elevation or androgen deprivation, resulted in generally augmented I(Cl,swell) and enhanced RVD. This occurred as a result of both the increased endogenous expression of ClC-3, which is a volume-sensitive Cl- channel involved, as we show, in I(Cl,swell) in LNCaP (lymph-node carcinoma of the prostate) cells and the weaker negative I(Cl,swell) control from Ca2+ entering via store-dependent pathways. The changes in the RVD of NE-differentiated cells generally mimicked those reported for Bcl-2-conferred apoptotic resistance. Our results suggest that strengthening the mechanism that helps to maintain volume constancy may contribute to better survival rates of apoptosis-resistant NE cells.


Assuntos
Androgênios/fisiologia , Canais de Cloreto/metabolismo , Neoplasias Hormônio-Dependentes/patologia , Neoplasias Hormônio-Dependentes/fisiopatologia , Neoplasias da Próstata/patologia , Neoplasias da Próstata/fisiopatologia , Apoptose , Cálcio/metabolismo , Diferenciação Celular , Tamanho Celular , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Humanos , Masculino , Neoplasias Hormônio-Dependentes/metabolismo , Técnicas de Patch-Clamp , Neoplasias da Próstata/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Regulação para Cima
6.
Endocr Relat Cancer ; 12(2): 367-82, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15947109

RESUMO

TRPM8 (melastatine-related transient receptor potential member 8), a member of the transient receptor potential (TRP) superfamily of cation channels, has been shown to be a calcium-channel protein. TRPM8 mRNA has also been shown to be overexpressed in prostate cancer and is considered to play an important role in prostate physiology. This study was designed to determine the androgen-regulation mechanisms for TRPM8 mRNA expression and to identify the phenotype of TRPM8-expressing cells in the human prostate. Our findings show that trpm8 gene expression requires a functional androgen receptor. Furthermore, this article argues strongly in favour of the fact that the trpm8 gene is a primary androgen-responsive gene. Single-cell reverse transcriptase PCR and immunohistochemical experiments also showed that the trpm8 gene was mainly expressed in the apical secretory epithelial cells of the human prostate and trpm8 down-regulation occurred during the loss of the apical differentiated phenotype of the primary cultured human prostate epithelial cells. The androgen-regulated trpm8 expression mechanisms are important in understanding the progression of prostate cancer to androgen-independence. These findings may contribute to design a strategy to predict prostate cancer status from the TRPM8 mRNA level. Furthermore, as the TRPM8 channel is localized in human prostate cells, it will be interesting to understand its physiological function in the normal prostate and its potential role in prostate cancer development.


Assuntos
Regulação Neoplásica da Expressão Gênica , Canais Iônicos/genética , Proteínas de Neoplasias/genética , Neoplasias da Próstata/genética , Receptores Androgênicos/fisiologia , 5-alfa-Di-Hidroprogesterona/metabolismo , 5-alfa-Di-Hidroprogesterona/farmacologia , Androgênios/metabolismo , Células Epiteliais/química , Células Epiteliais/metabolismo , Humanos , Canais Iônicos/metabolismo , Masculino , Miócitos de Músculo Liso/química , Miócitos de Músculo Liso/metabolismo , Proteínas de Neoplasias/metabolismo , Regiões Promotoras Genéticas/genética , Próstata/citologia , Próstata/metabolismo , Neoplasias da Próstata/metabolismo , RNA Mensageiro/análise , RNA Mensageiro/metabolismo , Receptores Androgênicos/genética , Elementos de Resposta , Canais de Cátion TRPM , Células Tumorais Cultivadas
7.
J Cell Physiol ; 204(1): 320-8, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15672411

RESUMO

Prostate smooth muscle cells predominantly express alpha1-adrenoceptors (alpha1-AR). alpha1-AR antagonists induce prostate smooth muscle relaxation and therefore they are useful therapeutic compounds for the treatment of benign prostatic hyperplasia symptoms. However, the Ca(2+) entry pathways associated with the activation of alpha1-AR in the prostate have yet to be elucidated. In many cell types, mammalian homologues of transient receptor potential (TRP) genes, first identified in Drosophila, encode TRPC (canonical TRP) proteins. They function as receptor-operated channels (ROCs) which are involved in various physiological processes such as contraction, proliferation, apoptosis, and differentiation. To date, the expression and function of TRPC channels have not been studied in prostate smooth muscle. In fura-2 loaded PS1 (a prostate smooth muscle cell line) which express endogenous alpha1A-ARs, alpha-agonists epinephrine (EPI), and phenylephrine (PHE) induced Ca(2+) influx which depended on the extracellular Ca(2+) and PLC activation but was independent of PKC activation. Thus, we have tested two membrane-permeable analogues of diacylglycerol (DAG), oleoyl-acyl-sn-glycerol (OAG) and 1,2-dioctanoyl-sn-glycerol (DOG). They initiated Ca(2+) influx whose properties were similar to those induced by the alpha-agonists. Sensitivity to 2-aminoethyl diphenylborate (2-APB), SKF-96365 and flufenamate implies that Ca(2+)-permeable channels mediated both alpha-agonist- and OAG-evoked Ca(2+) influx. Following the sarcoplasmic reticulum (SR) Ca(2+) store depletion by thapsigargin (Tg), a SERCA inhibitor, OAG and PHE were both still able to activate Ca(2+) influx. However, OAG failed to enhance Ca(2+) influx when added in the presence of an alpha-agonist. RT-PCR and Western blotting performed on PS1 cells revealed the presence of mRNAs and the corresponding TRPC3 and TRPC6 proteins. Experiments using an antisense strategy showed that both alpha-agonist- and OAG-induced Ca(2+) influx required TRPC3 and TRPC6, whereas the Tg-activated ("capacitative") Ca(2+) entry involved only TRPC3 encoded protein. It may be thus concluded that PS1 cells express TRPC3 and TRPC6 proteins which function as receptor- and store-operated Ca(2+) entry pathways.


Assuntos
Cálcio/metabolismo , Canais Iônicos/metabolismo , Músculo Liso/citologia , Próstata/citologia , Receptores Adrenérgicos alfa 1/metabolismo , Agonistas alfa-Adrenérgicos/farmacologia , Antagonistas Adrenérgicos alfa/farmacologia , Animais , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Linhagem Celular , Diglicerídeos/farmacologia , Expressão Gênica , Receptores de Inositol 1,4,5-Trifosfato , Ativação do Canal Iônico/efeitos dos fármacos , Ativação do Canal Iônico/fisiologia , Canais Iônicos/genética , Masculino , RNA Mensageiro/análise , Ratos , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Canais de Cátion TRPC , Canal de Cátion TRPC6
8.
Cell Death Differ ; 11(3): 321-30, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-14685164

RESUMO

Neuroendocrine (NE) differentiation is a hallmark of advanced, androgen-independent prostate cancer, for which there is no successful therapy. NE tumor cells are nonproliferating and escape apoptotic cell death; therefore, an understanding of the apoptotic status of the NE phenotype is imperative for the development of new therapies for prostate cancer. Here, we report for the first time on alterations in intracellular Ca(2+) homeostasis, which is a key factor in apoptosis, caused by NE differentiation of androgen-dependent prostate cancer epithelial cells. NE-differentiating regimens, either cAMP elevation or androgen deprivation, resulted in a reduced endoplasmic reticulum Ca(2+)-store content due to both SERCA 2b Ca(2+) ATPase and luminal Ca(2+) binding/storage chaperone calreticulin underexpression, and to a downregulated store-operated Ca(2+) current. NE-differentiated cells showed enhanced resistance to thapsigargin- and TNF-alpha-induced apoptosis, unrelated to antiapoptotic Bcl-2 protein overexpression. Our results suggest that targeting the key players determining Ca(2+) homeostasis in an attempt to enhance the proapoptotic potential of malignant cells may prove to be a useful strategy in the treatment of advanced prostate cancer.


Assuntos
Apoptose/efeitos dos fármacos , Cálcio/metabolismo , Diferenciação Celular , Homeostase , Sistemas Neurossecretores , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/fisiopatologia , Western Blotting , Canais de Cálcio/metabolismo , ATPases Transportadoras de Cálcio/metabolismo , Calreticulina/metabolismo , Linhagem Celular Tumoral , Capacitância Elétrica , Impedância Elétrica , Eletrofisiologia , Retículo Endoplasmático/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Corantes Fluorescentes , Fura-2 , Humanos , Cinética , Masculino , Modelos Biológicos , Técnicas de Patch-Clamp , Neoplasias da Próstata/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Tapsigargina/farmacologia , Fator de Necrose Tumoral alfa/farmacologia
9.
Cell Calcium ; 33(5-6): 357-73, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12765682

RESUMO

Ca2+ homeostasis mechanisms, in which the Ca2+ entry pathways play a key role, are critically involved in both normal function and cancerous transformation of prostate epithelial cells. Here, using the lymph node carcinoma of the prostate (LNCaP) cell line as a major experimental model, we characterize prostate-specific store-operated Ca2+ channels (SOCs)--a primary Ca2+ entry pathway for non-excitable cells--for the first time. We show that prostate-specific SOCs share major store-dependent, kinetic, permeation, inwardly rectifying, and pharmacological (including dual, potentiation/inhibition concentration-dependent sensitivity to 2-APB) properties with "classical" Ca2+ release-activated Ca2+ channels (CRAC), but have a higher single channel conductance (3.2 and 12pS in Ca2+- and Na+-permeable modes, respectively). They are subject to feedback inhibition via Ca2+-dependent PKC, CaMK-II and CaM regulatory pathways and are functionally dependent on caveolae integrity. Caveolae also provide a scaffold for spatial co-localization of SOCs with volume-regulated anion channels (VRAC) and their Ca2+-mediated interaction. The TRPC1 and TRPV6 members of the transient receptor potential (TRP) channel family are the most likely molecular candidates for the formation of prostate-specific endogenous SOCs. Differentiation of LNCaP cells to an androgen-insensitive, apoptotic-resistant neuroendocrine phenotype downregulates SOC current. We conclude that prostate-specific SOCs are important determinants in the transition to androgen-independent prostate cancer.


Assuntos
Canais de Cálcio/metabolismo , Cálcio/metabolismo , Células Epiteliais/metabolismo , Neoplasias da Próstata/metabolismo , Biomarcadores , Canais de Cálcio/genética , Eletrofisiologia , Retículo Endoplasmático/metabolismo , Células Epiteliais/patologia , Humanos , Cinética , Masculino , Oligonucleotídeos Antissenso/farmacologia , Neoplasias da Próstata/patologia , RNA Mensageiro/efeitos dos fármacos , Canais de Cátion TRPC , Canais de Cátion TRPV , Células Tumorais Cultivadas
10.
J Physiol ; 548(Pt 3): 823-36, 2003 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-12724346

RESUMO

Although the prostate gland is a rich source of alpha1-adreno- (alpha1-AR) and m1-cholino receptors (m1-AChR), the membrane processes associated with their activation in glandular epithelial cells is poorly understood. We used the whole-cell patch-clamp technique to show that the agonists of the respective receptors, phenylephrine (PHE) and carbachol (CCh), activate cationic membrane currents in lymph node carcinoma of the prostate (LNCaP) human prostate cancer epithelial cells, which are not dependent on the filling status of intracellular IP3-sensitive Ca2+ stores, but directly gated by diacylglycerol (DAG), as evidenced by the ability of its membrane permeable analogue, OAG, to mimic the effects of the agonists. The underlying cationic channels are characterized by the weak field-strength Eisenman IV permeability sequence for monovalent cations (PK(25) > PCs(4.6) > PLi(1.4) > PNa(1.0)), and the following permeability sequence for divalent cations: PCa(1.0) > PMg(0.74) > PBa(0.6) > PSr(0.36) > PMn(0.3). They are 4.3 times more permeable to Ca2+ than Na+ and more sensitive to the inhibitor 2-APB than SK&F 96365. RT-PCR analysis shows that DAG-gated members of the transient receptor potential (TRP) channel family, including TRPC1 and TRPC3, are present in LNCaP cells. We conclude that, in prostate cancer epithelial cells, alpha1-ARs and m1-AChRs are functionally coupled to Ca2+-permeable DAG-gated cationic channels, for which TRPC1 and TRPC3 are the most likely candidates.


Assuntos
Carbacol/farmacologia , Canais Iônicos/fisiologia , Fenilefrina/farmacologia , Sequência de Bases , Canais de Cálcio/fisiologia , Primers do DNA , Eletrofisiologia/métodos , Potenciais Evocados/efeitos dos fármacos , Potenciais Evocados/fisiologia , Humanos , Canais Iônicos/genética , Masculino , Canais de Potássio/efeitos dos fármacos , Canais de Potássio/fisiologia , Neoplasias da Próstata , Receptores Adrenérgicos alfa 1/efeitos dos fármacos , Receptores Adrenérgicos alfa 1/fisiologia , Receptores Muscarínicos/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Rutênio Vermelho/farmacologia , Canais de Cátion TRPC , Tetraetilamônio/farmacologia , Células Tumorais Cultivadas
11.
Arch Physiol Biochem ; 110(1-2): 12-5, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11935395

RESUMO

Cells displaying combined expression of different pituitary hormone genes (further referred to as 'multi-hormone mRNA cells') were identified in normal rat and mouse pituitary by single cell RT-PCR. These cells do not seem to produce or store all the respective hormones the mRNAs encode for. The cells are already developed at day 16 of embryonic life (E16) in the mouse. Different peptides, such as gamma3-melanocyte-stimulating hormone (gamma3-MSH) and gonadotropin-releasing hormone (GnRH), affect different subsets of these cells. In culture, estrogen and GnRH increase the number of 'multi-hormone mRNA cells' that contain prolactin (PRL) mRNA or mRNA of the alpha-subunit of the glycoprotein hormones (alpha-GSU) but not the number of 'multi-hormone mRNA cells' not containing PRL or alpha-GSU mRNA. 'Multi-hormone mRNA cells' may function as 'reserve cells' in which a particular hormone mRNA may be translated under a particular physiological condition demanding a rapid increase of that hormone.


Assuntos
Hipófise/metabolismo , Hormônios Hipofisários/genética , Animais , Expressão Gênica , Camundongos , Hipófise/citologia , Hormônios Hipofisários/metabolismo , RNA Mensageiro , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
12.
Recept Channels ; 7(5): 345-56, 2001.
Artigo em Inglês | MEDLINE | ID: mdl-11697078

RESUMO

MCF-7 cells express voltage-activated K+ channels. In the present study, we used the patch-clamp and RT-PCR techniques to investigate the involvement of these channels during the cell cycle progression. The outward rectifier current (IK) recorded during depolarization was almost completely suppressed by the classical K+ channel blocker tetraethylammonium (TEA) in MCF-7 cells. TEA also inhibited cell proliferation, as measured with 3H-thymidine incorporation. Moreover, profound changes were observed in both the resting membrane potential (RMP) and IK during the release from the G0/G1 phase of the cell cycle. MCF-7 cells arrested in G0/G1 were depolarized (-26.3 +/- 10 mV, n = 30) and IK-density was small (9.4 +/- 5.6 pA/pF, n = 60) compared to cells progressing in the G1 phase (RMP = -60 +/- 7.9 mV; n = 35 and IK-density = 30.2 +/- 8.5 pA/pF; n = 76). IK was highly sensitive to Mg2+, astemizole and TEA (10 mM). Extracellular perfusion of 5 mM Mg2+ dramatically slowed the activation and perfusion of 2 microM astemizole inhibited both IK (20 +/- 3%) and cell proliferation (23%). Moreover, the h-EAG mRNA expression was modulated during the cell cycle. Thus, these data suggested that h-EAG K+ channels play a role in controlling the proliferation and/or cell cycle.


Assuntos
Neoplasias da Mama/metabolismo , Canais de Potássio/metabolismo , Potássio/metabolismo , Astemizol/farmacologia , Transporte Biológico , Ciclo Celular/efeitos dos fármacos , Condutividade Elétrica , Canais de Potássio Éter-A-Go-Go , Feminino , Fase G1/efeitos dos fármacos , Inibidores do Crescimento/farmacologia , Humanos , Potenciais da Membrana , Bloqueadores dos Canais de Potássio/farmacologia , Fase de Repouso do Ciclo Celular/efeitos dos fármacos , Tetraetilamônio/farmacologia , Células Tumorais Cultivadas
13.
Clin Exp Pharmacol Physiol ; 28(3): 239-43, 2001 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11236134

RESUMO

1. We describe a novel paracrine control system in the pituitary gland, consisting of peptides derived from the N-terminal fragment of pro-opiomelanocortin (N-POMC), for example POMC(1-74) and gamma3-melanocyte-stimulating hormone (MSH). 2. By searching the target cells of these N-POMC fragments, using the rise of intracellular free calcium as a response system and single cell reverse transcription-polymerase chain reaction of hormone mRNA as a cell type identification method, we found that a considerable number of cells in normal rat pituitary display combinatorial expression of different pituitary hormone genes (further referred to as 'multihormone mRNA cells'), without indication that all these cells also produce or store the respective hormones translatable from these mRNA. The N-POMC fragments POMC(1-74) and gamma3-MSH preferentially target particular subsets of these multihormone mRNA cells. 3. We discovered a potentially novel receptor for gamma3-MSH on these cells; more precisely, on cells coexpressing growth hormone and prolactin. The putative novel receptor displays properties highly divergent from those of the known gamma3-MSH receptor (i.e. the melanocortin-3 receptor) and even of all other melanocortin receptors cloned today.


Assuntos
Pró-Opiomelanocortina/fisiologia , Animais , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Divisão Celular/efeitos dos fármacos , Divisão Celular/fisiologia , Humanos , Fragmentos de Peptídeos/farmacologia , Fragmentos de Peptídeos/fisiologia , Pró-Opiomelanocortina/metabolismo
14.
Endocrinology ; 142(1): 257-66, 2001 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11145589

RESUMO

The melanocortin (MC) gamma3MSH is a peptide that can be generated from the N-terminal domain of POMC and is believed to signal through the MC3 receptor. We recently showed that it induces a sustained rise in intracellular free calcium levels ([Ca(2+)](i)) in a subpopulation of pituitary cells, particularly in the lactosomatotroph lineage. In the present study we report that gamma3MSH and some analogs increase [Ca(2+)](i) in the GH- and PRL-secreting GH3 cell line and evaluate on the basis of pharmacological experiments and gene expression studies which MC receptor may be involved. A dose as low as 1 pM gamma3MSH induced an oscillating [Ca(2+)](i) increase in a significant percentage of GH3 cells. Increasing the dose recruited an increasing number of responding cells; a maximum was reached at 0.1 nM. gamma2MSH, alphaMSH, and NDP-alphaMSH displayed a similar effect. SHU9119, an MC3 and MC4 receptor antagonist, and an MC5 receptor agonist, did not affect the number of cells showing a [Ca(2+)](i) rise in response to gamma3MSH. SHU9119 had also no effect when added alone. MTII, a potent synthetic agonist of the MC3, MC4, and MC5 receptor as well as an N-terminally extended recombinant analog of gamma3MSH showed low potency in increasing [Ca(2+)](i) in GH3 cells, but high potency in stimulating cAMP accumulation in HEK 293 cells stably transfected with the MC3 receptor. In contrast, a peptide corresponding to the gamma2MSH sequence of POMC-A of Acipenser transmontanus increased [Ca(2+)](i) in GH3 cells, but was about 50 times less potent than gamma2- or gamma3MSH in stimulating cAMP accumulation in the MC3 receptor expressing HEK 293 cells. By means of RT-PCR performed on a RNA extract from GH3 cells, the messenger RNA of the MC2, MC3, and MC4 receptor was undetectable, but messenger RNA of the MC5 receptor was clearly present. These data suggest that the GH3 cell line does not mediate the effect of gamma3MSH through the MC3 receptor. The involvement of the MC5 receptor is unlikely, but cannot definitely be excluded. The findings animate the hypothesis that there exists a second, hitherto unidentified, MC receptor that displays high affinity for gamma3MSH.


Assuntos
Cálcio/metabolismo , AMP Cíclico/metabolismo , Receptores da Corticotropina/fisiologia , gama-MSH/fisiologia , Glândulas Suprarrenais/metabolismo , Animais , Encéfalo/metabolismo , Células CHO , Linhagem Celular , Cricetinae , Humanos , Hormônios Estimuladores de Melanócitos/farmacologia , Oligopeptídeos/farmacologia , Hipófise , Ratos , Receptor Tipo 3 de Melanocortina , Receptor Tipo 4 de Melanocortina , Receptores da Corticotropina/efeitos dos fármacos , Receptores da Corticotropina/genética , Proteínas Recombinantes/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Hormônio Liberador de Tireotropina/farmacologia , Transfecção , alfa-MSH/análogos & derivados , gama-MSH/farmacologia
15.
Biochem Biophys Res Commun ; 278(2): 272-7, 2000 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-11097830

RESUMO

Electrophysiological, immunocytochemical, and RT-PCR methods were used to identify a K(+) conductance not yet described in MCF-7 human breast cancer cells. A voltage-dependent and TEA-sensitive K(+) current was the most commonly observed in these cells. The noninactivating K(+) current (I(K)) was insensitive to iberiotoxin (100 nM) and charybdotoxin (100 nM) but reduced by alpha-dendrotoxin (alpha-DTX). Perfusion of alpha-DTX reduced a fraction of I(K) amplitude in a dose-dependent manner (IC(50) = 0.6 +/- 0.3 nM). This DTX sensitive I(K) exhibited a voltage threshold at -20 mV and was not inactivated. The time constant of activation was 5.3 +/- 2.2 ms measured at +60 mV. The averaged half-activation potential and slope factor values were 14 +/- 1.6 mV and 10 +/- 1.4, respectively. Immunocytochemical analysis demonstrated that plasma membrane was labeled by anti-Kv1.1 but not by anti-Kv1.2 nor anti-Kv1.3 antibodies. Furthermore, only Kv1.1 mRNA was detected in MCF-7 cells. Incubation in 1 and 10 nM alpha-DTX reduced cell proliferation by 20 and 30%, respectively. These data provide the first evidence of Kv1.1 K(+) channels expression in MCF-7 cells and indicate that these channels are implicated in cell proliferation.


Assuntos
Neoplasias da Mama/metabolismo , Divisão Celular , Canais de Potássio de Abertura Dependente da Tensão da Membrana , Canais de Potássio/metabolismo , Neoplasias da Mama/patologia , Venenos Elapídicos/farmacologia , Humanos , Imuno-Histoquímica , Canal de Potássio Kv1.1 , Canais de Potássio/efeitos dos fármacos , Canais de Potássio/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Tumorais Cultivadas
16.
Prostate ; 43(3): 205-14, 2000 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-10797495

RESUMO

BACKGROUND: Very little is known about the functional expression and the physiological role of ryanodine receptors in nonexcitable cells, and in prostate cancer cells in particular. Nonetheless, different studies have demonstrated that calcium is a major factor involved in apoptosis. Therefore, the calcium-regulatory mechanisms, such as ryanodine-mediated calcium release, may play a substantial role in the regulation of apoptosis. METHODS: We assessed the presence of such functional receptors in LNCaP prostate cancer cells, using fluorimetric measurements of intracellular calcium and expression assays of mRNA encoding ryanodine receptors. RESULTS: We show here that LNCaP cells responded to caffeine, a ryanodine receptor agonist, by mobilizing calcium. Another ryanodine receptor agonist, 4-chloro-m-cresol, had a similar effect and promoted calcium release. These effects were inhibited by pretreatment with ryanodine or thapsigargin. In addition to a calcium release, caffeine was able to produce a calcium entry blocked by nickel. We used a reverse transcription-polymerase chain reaction assay to investigate the expression of ryanodine receptors in LNCaP cells. Two types of ryanodine receptor mRNAs were expressed in LNCaP cells: RyR1 and RyR2 mRNAs. Finally, we show that ryanodine receptor activation by caffeine slightly stimulates apoptosis of prostate cancer cells, and that the inhibition of these receptors by ryanodine protects the cells against apoptosis. CONCLUSIONS: The combination of results showed that LNCaP cells, derived from a human prostate cancer, express functional RyRs able to mobilize Ca(2+) from intracellular stores and which might control apoptosis.


Assuntos
Apoptose , Neoplasias da Próstata/patologia , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Cafeína/farmacologia , Cálcio/metabolismo , Citometria de Fluxo , Humanos , Masculino , Neoplasias da Próstata/metabolismo , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Rianodina/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Células Tumorais Cultivadas
17.
Endocrinology ; 140(10): 4874-85, 1999 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-10499547

RESUMO

Gamma3-MSH has recently been shown to be a biologically active peptide in the rat anterior pituitary. It induces a sustained rise in intracellular free calcium levels ([Ca2+]i) in a relatively small population of immature pituitary cells. The present study was intended to identify the target cells of this peptide and to discern the signal-transducing melanocortin (MC) receptor. In dispersed pituitary cells from 14-day-old rats, increasing doses of gamma3-MSH (0.1, 1, and 10 nM) evoked a sustained oscillating [Ca2+]i rise in an increasing number of cells (up to 14.5%). Within the responsive cells, 53% showed GH immunoreactivity (-ir), 12% showed PRL-ir, 2% showed TSHbeta-ir, 5% showed LHbeta-ir, and 10% showed ACTH-ir, whereas 18% did not express any hormone-ir to a detectable level. As assessed by single cell RT-PCR for the presence of pituitary hormone messenger RNA (mRNA), 26% of the gamma3-MSH-responsive cells contained only GH mRNA, 5% contained only PRL mRNA, and 4% contained only TSHbeta mRNA. Twenty-two percent contained mRNA of GH, PRL, and TSHbeta in various dual or triple combinations. About 24% of the gamma3-MSH-responsive cells expressed POMC mRNA, mostly together with other mRNAs, i.e. with GH mRNA and/or PRL mRNA or with mRNA of GH, PRL, and TSHbeta. Eighteen percent of the responsive cells expressed LHbeta, all of them together with mRNA of GH, PRL, and TSHbeta in various combinations. The absence of hormone mRNA was found in less than 1% of the responsive cells. In cells chosen at random (representative of the total pituitary cell population), the proportion of cells expressing two or multiple hormone mRNAs was twice as low as that in the gamma3-MSH-responsive population, whereas the proportion of cells expressing a single hormone mRNA was twice as high (about two thirds of all cells). Moreover, unlike in the gamma3-MSH-responsive cell population, randomly chosen cells were found that coexpressed POMC mRNA with LHbeta mRNA. The effect of gamma3-MSH on [Ca2+]i was blocked by the MC-3 receptor antagonist SHU9119 (used up to a 1000-fold excess) in 46% or less of the responsive cells. SHU9119 failed to block the [Ca2+]i response to gamma3-MSH in PRL-, GH-, and TSHbeta-ir cells, but it did block the response in most ACTH-ir cells and in cells expressing no hormone to a detectable level. Single cell RT-PCR revealed that expression of MC-3 receptor mRNA was detected in only 16% of gamma3-MSH-responsive cells. The present data suggest that the target cells of gamma3-MSH in terms of [Ca2+]i responses in the immature rat pituitary constitute subpopulations of all main pituitary cell types, including nonhormonal (or low expression hormonal) cells. However, in contrast to the total pituitary cell population, most of these cells display multilineage gene activation at the mRNA level, i.e. express mRNA of GH, PRL, TSHbeta, POMC, and LHbeta in dual, triple, or quadruple combinations. Although gamma3-MSH may act through the MC-3 receptor in a portion of these cells, most of these cells (mainly in the lacto-somatotroph lineage) may transduce the signal through another receptor or through an MC-3 receptor with unconventional binding characteristics.


Assuntos
Animais Recém-Nascidos/fisiologia , Cálcio/metabolismo , Membranas Intracelulares/metabolismo , Hormônios Estimuladores de Melanócitos/fisiologia , Hipófise/citologia , Animais , Linhagem Celular , Feminino , Hormônio do Crescimento/metabolismo , Hormônios/metabolismo , Fenótipo , Hipófise/metabolismo , Hipófise/fisiologia , Prolactina/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Receptor Tipo 3 de Melanocortina , Receptores da Corticotropina/antagonistas & inibidores
18.
J Neurochem ; 70(3): 899-907, 1998 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-9489708

RESUMO

The GABA receptor rho1, rho2, and rho3 subunits are expressed in the retina where they form bicuculline-insensitive GABA(C) receptors. We used northern blot, in situ hybridization, and RT-PCR analysis to study the expression of rho subunits in rat brains. In situ hybridization allowed us to detect rho-subunit expression in the superficial gray layer of the superior colliculus and in the cerebellar Purkinje cells. RT-PCR experiments indicated that (a) in retina and in domains that may contain functional GABA(C) receptors, rho2 and rho1 subunits are expressed at similar levels; and (b) in domains and in tissues that are unlikely to contain GABA(C) receptors, rho2 mRNA is enriched relative to rho1 mRNA. These results suggest that both rho1 and rho2 subunits are necessary to form a functional GABA(C) receptor. The use of RT-PCR also showed that, except in the superior colliculus, rho3 is expressed along with rho1 and rho2 subunits. We also raised an antibody against a peptide sequence unique to the rho1 subunit. The use of this antibody on cerebellum revealed the rat rho1 subunit in the soma and dendrites of Purkinje neurons. The allocation of GABA(C) receptor subunits to identified neurons paves the way for future electrophysiological studies.


Assuntos
Química Encefálica/fisiologia , Receptores de GABA/análise , Receptores de GABA/genética , Animais , Northern Blotting , Western Blotting , Expressão Gênica/fisiologia , Imuno-Histoquímica , Hibridização In Situ , Reação em Cadeia da Polimerase , Células de Purkinje/química , RNA Mensageiro/análise , Ratos , Ratos Wistar , Receptores de GABA/química , Colículos Superiores/química
19.
Neuroendocrinology ; 63(3): 244-56, 1996 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-8677013

RESUMO

Arachidonic acid (AA) has been implicated in signaling actions in several cell types including endocrine cells. In the present study, we investigated the effect of exogenous AA on GH release from dispersed pituitary cells and tried to elucidate the mechanism involved in this process. We show that AA stimulates GH release in a dose- and extracellular calcium-dependent manner. The effects of AA on cytosolic calcium concentration ([Ca2+]i) were studied using dual-emission microspectrofluorimetry in identified somatotropes. AA (1 microM) induced an increase in intracellular calcium concentration ([Ca2+]i) by stimulating Ca2+ influx through dihydropyridine-sensitive, voltage-dependent calcium channels. In these cells, the effects of AA were only reduced by the inhibition of protein kinase C (PKC) activity, suggesting that the fatty acid may act by both PKC-dependent and PKC-independent pathways. In order to determine whether AA metabolites were involved in the effects attributed to AA, and, if so, which ones, we inhibited the three arachidonate metabolic pathways: cyclo-oxygenase by indomethacin (50 microM), lipoxygenase by nordihydroguaiaretic acid (NGDA, 50 microM), and epoxygenase by 5,8,11, 14-eicosatetraynoic acid (ETYA, 10 microM). NGDA and ETYA reduced the effects of AA on GH release (50 and 74%, respectively) and inhibited the [Ca2+]i response, whereas indomethacin slightly potentiated both AA-induced GH release and [Ca2+]i increase. As these results suggested that lipoxygenase metabolites may be responsible for AA-induced Ca2+ influx and GH release, we tested the effects of 5-, 12- and 15-hydroperoxyeicosatetraenoic acids (5-, 12- and 15-HpETE) on [Ca2+]i and GH release. They all stimulated calcium influx and GH release in a dose-dependent manner, 12-HpETE being more potent than 5- and 15-HpETE. We conclude that lipoxygenase metabolites of arachidonic acid, particularly 12-HpETE, may be involved in the GH secretion mechanism, probably by facilitating Ca2+ influx via L-type Ca2+ channels.


Assuntos
Ácido Araquidônico/farmacologia , Cálcio/farmacologia , Hormônio do Crescimento/metabolismo , Adeno-Hipófise/efeitos dos fármacos , Adeno-Hipófise/metabolismo , Ácido 5,8,11,14-Eicosatetrainoico/farmacologia , Animais , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Células Cultivadas , Inibidores de Ciclo-Oxigenase/farmacologia , Sinergismo Farmacológico , Inibidores Enzimáticos/farmacologia , Feminino , Indometacina/farmacologia , Leucotrienos/farmacologia , Inibidores de Lipoxigenase/farmacologia , Masoprocol/farmacologia , Proteína Quinase C/antagonistas & inibidores , Ratos , Ratos Wistar , Espectrometria de Fluorescência
20.
Am J Physiol ; 268(6 Pt 1): E1215-23, 1995 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-7611398

RESUMO

Arachidonic acid (AA) released from membrane phospholipids after activation of surface receptors causes cellular signaling actions in neurons and endocrine cells, including stimulation of prolactin (PRL) release from dissociated rat pituitary cells and clonal cells of the GH3 pituitary tumor line. In the present study, we investigated the effect of exogenous AA on PRL release from dispersed pituitary cells and tried to elucidate the mechanism involved in this process. The effects of AA on cytosolic Ca2+ concentration ([Ca2+]i) were studied using dual-emission microspectrofluorometry in identification lactotrophs and on PRL release in dispersed pituitary cell populations. AA had a dose-dependent effect on [Ca2+]i. At 1 microM, the Ca2+ increase was biphasic: a mobilization of intracellular Ca2+ from intracellular stores was followed by stimulation of Ca2+ influx. For lower concentrations (10 and 100 nM), only the stimulation of Ca2+ influx was observed. AA-induced Ca2+ influx and PRL release were not due to the stimulation of a phorbol 12-myristate 13-acetate-sensitive protein kinase C. In the same way, AA-stimulated PRL release and intracellular Ca2+ increase were independent of intracellular thapsigargin-sensitive Ca2+ pools. Furthermore, blockade of Ca2+ channels suppressed AA-induced PRL release. We hypothesize that Ca2+ influx plays a major role in AA-induced PRL release.


Assuntos
Ácido Araquidônico/farmacologia , Cálcio/metabolismo , Adeno-Hipófise/fisiologia , Prolactina/metabolismo , Hormônio Liberador de Tireotropina/farmacologia , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , ATPases Transportadoras de Cálcio/antagonistas & inibidores , Linhagem Celular , Células Cultivadas , Cobalto/farmacologia , Citosol/metabolismo , Relação Dose-Resposta a Droga , Feminino , Cinética , Adeno-Hipófise/efeitos dos fármacos , Neoplasias Hipofisárias , Ratos , Ratos Wistar , Terpenos/farmacologia , Acetato de Tetradecanoilforbol/farmacologia , Tapsigargina , Fatores de Tempo , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...