Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Haematologica ; 107(12): 2905-2917, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-35263985

RESUMO

Aggressive B-cell malignancies, such as mantle cell lymphoma (MCL), are microenvironment-dependent tumors and a better understanding of the dialogs occurring in lymphoma-protective ecosystems will provide new perspectives to increase treatment efficiency. To identify novel molecular regulations, we performed a transcriptomic analysis based on the comparison of circulating MCL cells (n=77) versus MCL lymph nodes (n=107) together with RNA sequencing of malignant (n=8) versus normal B-cell (n=6) samples. This integrated analysis led to the discovery of microenvironment-dependent and tumor-specific secretion of interleukin-32 beta (IL32ß), whose expression was confirmed in situ within MCL lymph nodes by multiplex immunohistochemistry. Using ex vivo models of primary MCL cells (n=23), we demonstrated that, through the secretion of IL32ß, the tumor was able to polarize monocytes into specific MCL-associated macrophages, which in turn favor tumor survival. We highlighted that while IL32ß-stimulated macrophages secreted several protumoral factors, they supported tumor survival through a soluble dialog, mostly driven by BAFF. Finally, we demonstrated the efficacy of selective NIK/alternative-NFkB inhibition to counteract microenvironment-dependent induction of IL32ß and BAFF-dependent survival of MCL cells. These data uncovered the IL32ß/BAFF axis as a previously undescribed pathway involved in lymphoma-associated macrophage polarization and tumor survival, which could be counteracted through selective NIK inhibition.


Assuntos
Fator Ativador de Células B , Interleucinas , Linfoma de Célula do Manto , Proteínas Serina-Treonina Quinases , Adulto , Humanos , Linhagem Celular Tumoral , Interleucinas/metabolismo , Linfoma de Célula do Manto/patologia , Macrófagos/metabolismo , NF-kappa B/metabolismo , Microambiente Tumoral , Fator Ativador de Células B/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Quinase Induzida por NF-kappaB
2.
PLoS Genet ; 14(9): e1007621, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30222786

RESUMO

In the sea urchin embryo, specification of the dorsal-ventral axis critically relies on the spatially restricted expression of nodal in the presumptive ventral ectoderm. The ventral restriction of nodal expression requires the activity of the maternal TGF-ß ligand Panda but the mechanism by which Panda restricts nodal expression is unknown. Similarly, what initiates expression of nodal in the ectoderm and what are the mechanisms that link patterning along the primary and secondary axes is not well understood. We report that in Paracentrotus lividus, the activity of the maternally expressed ETS-domain transcription factor Yan/Tel is essential for the spatial restriction of nodal. Inhibiting translation of maternal yan/tel mRNA disrupted dorsal-ventral patterning in all germ layers by causing a massive ectopic expression of nodal starting from cleavage stages, mimicking the phenotype caused by inactivation of the maternal Nodal antagonist Panda. We show that like in the fly or in vertebrates, the activity of sea urchin Yan/Tel is regulated by phosphorylation by MAP kinases. However, unlike in the fly or in vertebrates, phosphorylation by GSK3 plays a central role in the regulation Yan/Tel stability in the sea urchin. We show that GSK3 phosphorylates Yan/Tel in vitro at two different sites including a ß-TRCP ubiquitin ligase degradation motif and a C-terminal Ser/Thr rich cluster and that phosphorylation of Yan/Tel by GSK3 triggers its degradation by a ß-TRCP/proteasome pathway. Finally, we show that, Yan is epistatic to Panda and that the activity of Yan/Tel is required downstream of Panda to restrict nodal expression. Our results identify Yan/Tel as a central regulator of the spatial expression of nodal in Paracentrotus lividus and uncover a key interaction between the gene regulatory networks responsible for patterning the embryo along the dorsal-ventral and animal-vegetal axes.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Proteína Nodal/metabolismo , Paracentrotus/crescimento & desenvolvimento , Proteínas Repressoras/metabolismo , Transdução de Sinais/fisiologia , Animais , Animais Geneticamente Modificados , Padronização Corporal/fisiologia , Motivo ETS , Embrião não Mamífero , Quinase 3 da Glicogênio Sintase/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Mutagênese Sítio-Dirigida , Proteína Nodal/genética , Proteólise , Proteínas Contendo Repetições de beta-Transducina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...