Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Comput Methods Biomech Biomed Engin ; 20(2): 130-141, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27398651

RESUMO

This paper presents a finite element model of the ankle, taking into account the effects of muscle forces, determined by a musculoskeletal analysis, to investigate the contact stress distribution in the tibio-talar joint in patients with triple arthrodesis and in normal subjects. Forces of major ankle muscles were simulated and corresponded well with the trend of their EMG signals. These forces were applied to the finite element model to obtain stress distributions for patients with triple arthrodesis and normal subjects in three stages of the gait cycle, i.e. heel strike, midstance, and heel rise. The results demonstrated that the stress distribution patterns of the tibio-talar joint in patients with triple arthrodesis differ from those of normal subjects in investigated gait cycle stages. The mean and standard deviations for maximum stresses in the tibo-talar joint in the stance phase for patients and normal subjects were 9.398e7 ± 1.75e7 and 7.372e7 ± 4.43e6 Pa, respectively. The maximum von Mises stresses of the tibio-talar joint for all subjects in the stance phase found to be on the lateral side of the inferior surface of the joint. The results also indicate that, in patients with triple arthrodesis, increasing gastrocnemius-soleus muscle force reduces the stress on the medial malleolus compared with normal subjects. Most of stresses in this area are between 45 and 109 kPa, and will decrease to almost 32 kPa in patients after increasing of 40% in gastrocnemius-soleus muscle force.


Assuntos
Tornozelo/fisiologia , Artrodese , Músculo Esquelético/fisiologia , Adulto , Articulação do Tornozelo/fisiologia , Fenômenos Biomecânicos , Índice de Massa Corporal , Feminino , Análise de Elementos Finitos , Marcha/fisiologia , Humanos , Imageamento Tridimensional , Masculino , Modelos Teóricos
2.
Lasers Med Sci ; 31(9): 1827-1836, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27572716

RESUMO

This study aimed at investigating the effects of photobiomodulation (PBM) and low-amplitude high-frequency (LAHF) whole body mechanical vibration on bone fracture healing process when metallic plates are implanted in rats' femurs. Forty male rats weighing between 250 and 350 g, 12 weeks old, were employed in this study. A transverse critical size defect (CSD) was made in their right femurs that were fixed by stainless steel plates. After the surgery, the rats were divided equally into four groups: low-level laser therapy group (GaAlAs laser, 830 nm, 40 mW, 4 J/cm2, 0.35 cm beam diameter, LLLT), whole body vibration group (60 Hz, 0.1 mm amplitude, 1.5 g, WBV), a combination of laser and vibration group (LV), and the control group (C). Each group was divided into two subgroups based on sacrifice dates. The rats were sacrificed at intervals of 3 and 6 weeks after the surgery to extract their right femurs for radiography and biomechanical and histological analyses, and the results were analyzed using standard statistical methods. Radiographic analyses showed greater callus formation in the LLLT and WBV groups than in control group at both 3 (P < 0.05 and P < 0.001, respectively) and 6 weeks after surgery (P < 0.05 and P < 0.05, respectively). Histological evaluations showed a higher amount of new bone formation and better maturity in the LLLT and WBV groups than the control groups at 3 and 6 weeks after surgery. Biomechanical tests showed that the maximum force at fracture in the LLLT (P < 0.05 in 3 weeks and P < 0.05 in 6 weeks) and WBV (P < 0.001 in 3 weeks and P < 0.05 in 6 weeks) groups was greater than that in the control groups at both time intervals. But a combination of laser and vibration therapy, LV, did not show a positive interaction on bone fracture healing process. The biostimulation effects of PBM or LLLT and of low-amplitude high-frequency WBV both had a positive impact on bone healing process, for critical size defects in the presence of a stainless steel implant. But their combination, i.e., low-level laser therapy and low-amplitude high-frequency whole body vibration (LV), interestingly did not accelerate the fractured bone healing process.


Assuntos
Consolidação da Fratura/fisiologia , Fraturas Ósseas/radioterapia , Lasers Semicondutores/uso terapêutico , Terapia com Luz de Baixa Intensidade/métodos , Vibração/uso terapêutico , Animais , Fêmur , Masculino , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...