Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Tissue Eng Part A ; 27(11-12): 703-713, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33430704

RESUMO

With this work, we design alginate-based hydrogels for therapeutically directing revascularization and repair processes in vivo. We immobilize pleiotrophin (PTN) in injectable hydrogel formulations as the target factor to stimulate proangiogenic responses in endothelial cells. The optimized heparin-alginate/chitosan hydrogels, produced by internal crosslinking with calcium carbonate, show good biocompatibility and injectability and allow controlling the release of immobilized proteins in the subcutaneous tissue over a period of 7 days. In vitro assays, performed with translational human induced pluripotent stem cell-derived endothelial cells, and the in vivo Matrigel plug assay are conducted to demonstrate the angiogenic effects of PTN on endothelial cells. Our results indicate that PTN stimulates endothelial cell morphogenesis in vitro and the migration of endothelial cells and macrophages as soon as 4 days after injections of the developed hydrogels, promoting the formation of structures similar to the healthy granulation tissue, which is an indicator of healing in ischemic wounds. These studies provide the rationale for further investigating this novel therapeutic for pursuing increased vascular density for efficient regeneration of ischemic tissues, by leveraging the host endothelial cell population to initiate angiogenic and reparative processes in vivo. Impact statement Localized, sustained, and controlled delivery of angiogenic factors is crucial for enabling the formation of novel vascular networks in ischemic tissues. This study describes the development of an injectable heparin-alginate/collagen hydrogel for controlling the in vivo release and bioactivity of pleiotrophin (PTN), a heparin-binding factor with significant angiogenic activity. We demonstrate that PTN promotes angiogenesis in an in vitro model of hypoxia and in preclinical subcutaneous models. These results advance our understanding of PTN function in guiding therapeutic angiogenesis and are critical to inform the development of novel translational strategies for ischemic tissue repair and regeneration.


Assuntos
Heparina , Células-Tronco Pluripotentes Induzidas , Alginatos/farmacologia , Proteínas de Transporte , Citocinas , Células Endoteliais , Heparina/farmacologia , Humanos , Hidrogéis/farmacologia , Morfogênese , Neovascularização Fisiológica
2.
Artigo em Inglês | MEDLINE | ID: mdl-32318563

RESUMO

Coronary artery disease is a severe ischemic condition characterized by the reduction of blood flow in the arteries of the heart that results in the dysfunction and death of cardiac tissue. Despite research over several decades on how to reduce long-term complications and promote angiogenesis in the infarct, the medical field has yet to define effective treatments for inducing revascularization in the ischemic tissue. With this work, we have developed functional biomaterials for the controlled release of immunomodulatory cytokines to direct immune cell fate for controlling wound healing in the ischemic myocardium. The reparative effects of colony-stimulating factor (CSF-1), and anti-inflammatory interleukins 4/6/13 (IL4/6/13) have been evaluated in vitro and in a predictive in vivo model of ischemia (the skin flap model) to optimize a new immunomodulatory biomaterial that we use for treating infarcted rat hearts. Alginate hydrogels have been produced by internal gelation with calcium carbonate (CaCO3) as carriers for the immunomodulatory cues, and their stability, degradation, rheological properties and release kinetics have been evaluated in vitro. CD14 positive human peripheral blood monocytes treated with the immunomodulatory biomaterials show polarization into pro-healing macrophage phenotypes. Unloaded and CSF-1/IL4 loaded alginate gel formulations have been implanted in skin flap ischemic wounds to test the safety and efficacy of the delivery system in vivo. Faster wound healing is observed with the new therapeutic treatment, compared to the wounds treated with the unloaded controls at day 14. The optimized therapy has been evaluated in a rat model of myocardial infarct (ischemia/reperfusion). Macrophage polarization toward healing phenotypes and global cardiac function measured with echocardiography and immunohistochemistry at 4 and 15 days demonstrate the therapeutic potential of the proposed immunomodulatory treatment in a clinically relevant infarct model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...