Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Med Chem Lett ; 6(3): 329-33, 2015 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-25815155

RESUMO

A series of pyrido[3,4-d]azepines that are potent and selective 5-HT2C receptor agonists is disclosed. Compound 7 (PF-04781340) is identified as a suitable lead owing to good 5-HT2C potency, selectivity over 5-HT2B agonism, and in vitro ADME properties commensurate with an orally available and CNS penetrant profile. The synthesis of a novel bicyclic tetrasubstituted pyridine core template is outlined, including rationale to account for the unexpected formation of aminopyridine 13 resulting from an ammonia cascade cyclization.

2.
Chem Commun (Camb) ; 50(64): 8908-11, 2014 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-24969811

RESUMO

The first regioselective ortho-lithiation at the 4-position of simple pyridine derivatives containing a 3-oxetane unit has been achieved using n-butyllithium as base. Electrophilic quenching of the resulting lithio species provides a rapid access to a broad range of new functionalized pyridine oxetane building blocks.


Assuntos
Éteres Cíclicos/química , Lítio/química , Compostos Organometálicos/química , Piridinas/química
3.
Angew Chem Int Ed Engl ; 52(45): 11726-43, 2013 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-24105797

RESUMO

C-H bonds are ubiquitous in organic compounds. It would, therefore, appear that direct functionalization of substrates by activation of C-H bonds would eliminate the multiple steps and limitations associated with the preparation of functionalized starting materials. Regioselectivity is an important issue because organic molecules can contain a wide variety of C-H bonds. The use of a directing group can largely overcome the issue of regiocontrol by allowing the catalyst to come into proximity with the targeted C-H bonds. A wide variety of functional groups have been evaluated for use as directing groups in the transformation of C-H bonds. In 2005, Daugulis reported the arylation of unactivated C(sp(3))-H bonds by using 8-aminoquinoline and picolinamide as bidentate directing groups, with Pd(OAc)2 as the catalyst. Encouraged by these promising results, a number of transformations of C-H bonds have since been developed by using systems based on bidentate directing groups. In this Review, recent advances in this area are discussed.

4.
Chemistry ; 18(3): 940-50, 2012 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-22180016

RESUMO

Various silylboranes, which were outfitted with a catecholborane moiety at one end and a (Me(3)Si)(3)Si moiety at the other end of a carbon chain, were prepared through the hydroboration of the corresponding unsaturated silanes. The C-centered radical species generated from these silylboranes efficiently cyclized to provide, through a 5-exo intramolecular homolytic substitution at the silicon center, the corresponding silacycle and a Me(3)Si radical that was subsequently trapped by sulfonyl acceptors. These cyclizations proceeded at unprecedented rates, due, in part, to a strong gem-dialkyl effect that was attributable to the presence of bulky substituents on a quaternary center located on the chain. In parallel, we designed arylsilylboranes that produced silyl radicals through a 1,5-hydrogen transfer. Such silyl radicals may be valuable radical chain carriers, for instance, in oximation reactions of alkyl halides. Finally, computational studies allowed calculation of activation barriers of the homolytic substitution step and additionally illustrated that the overall reaction mechanism involved a transition state in which the attacking carbon center, the central silicon atom, and the Me(3)Si leaving group were collinear.

5.
Chemistry ; 17(49): 13904-11, 2011 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-22052660

RESUMO

Tin-free oximation, vinylation, and allylation of alkyl halides have been developed by using allylsilanes as di-tin surrogates. Initiation of the radical process with a peroxide provides the silyl radical, which can abstract a halogen from the corresponding alkyl halide. The resulting carbon-centered radical then adds to various acceptors, including a sulfonyloxime, a vinylsulfone, and an allylsulfone, leading to formation of the desired products along with the corresponding allylsulfone resulting from the reaction of the PhSO(2) radical with the allylsilane precursor. Better results were generally obtained with methallylsilane 1b than with 1a. This observation was rationalized by invoking the higher nucleophilicity of 1b and the faster ß-fragmentation of the corresponding ß-silyl radical intermediate. Calculation of the energy barrier for the ß-fragmentation of a series of ß-silyl radicals at the DFT level supported this hypothesis. Finally, a second version of these oximation and vinylation reactions, based on the utilization of 3-tris(trimethylsilyl)silylthiopropene, was devised, affording the desired oximes and olefins in reasonable yields. This strategy allowed the title reaction to be performed under milder conditions (AIBN, benzene, 80 °C), as a result of the easier ß-fragmentation of the C-S bond as compared with the C-Si bond.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...