Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RNA ; 25(5): 607-619, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30737359

RESUMO

Adenosine deaminase acting on transfer RNA (ADAT) is an essential eukaryotic enzyme that catalyzes the deamination of adenosine to inosine at the first position of tRNA anticodons. Mammalian ADATs modify eight different tRNAs, having increased their substrate range from a bacterial ancestor that likely deaminated exclusively tRNAArg Here we investigate the recognition mechanisms of tRNAArg and tRNAAla by human ADAT to shed light on the process of substrate expansion that took place during the evolution of the enzyme. We show that tRNA recognition by human ADAT does not depend on conserved identity elements, but on the overall structural features of tRNA. We find that ancestral-like interactions are conserved for tRNAArg, while eukaryote-specific substrates use alternative mechanisms. These recognition studies show that human ADAT can be inhibited by tRNA fragments in vitro, including naturally occurring fragments involved in important regulatory pathways.


Assuntos
Adenosina Desaminase/metabolismo , Anticódon/química , RNA de Transferência de Alanina/química , RNA de Transferência de Arginina/química , Adenosina/metabolismo , Adenosina Desaminase/genética , Anticódon/genética , Anticódon/metabolismo , Sequência de Bases , Desaminação , Evolução Molecular , Expressão Gênica , Humanos , Inosina/metabolismo , Conformação de Ácido Nucleico , RNA de Transferência de Alanina/genética , RNA de Transferência de Alanina/metabolismo , RNA de Transferência de Arginina/genética , RNA de Transferência de Arginina/metabolismo , Alinhamento de Sequência , Especificidade por Substrato
2.
Mol Biol Evol ; 36(4): 650-662, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30590541

RESUMO

The modification of adenosine to inosine at the first position of transfer RNA (tRNA) anticodons (I34) is widespread among bacteria and eukaryotes. In bacteria, the modification is found in tRNAArg and is catalyzed by tRNA adenosine deaminase A, a homodimeric enzyme. In eukaryotes, I34 is introduced in up to eight different tRNAs by the heterodimeric adenosine deaminase acting on tRNA. This substrate expansion significantly influenced the evolution of eukaryotic genomes in terms of codon usage and tRNA gene composition. However, the selective advantages driving this process remain unclear. Here, we have studied the evolution of I34, tRNA adenosine deaminase A, adenosine deaminase acting on tRNA, and their relevant codons in a large set of bacterial and eukaryotic species. We show that a functional expansion of I34 to tRNAs other than tRNAArg also occurred within bacteria, in a process likely initiated by the emergence of unmodified A34-containing tRNAs. In eukaryotes, we report on a large variability in the use of I34 in protists, in contrast to a more uniform presence in fungi, plans, and animals. Our data support that the eukaryotic expansion of I34-tRNAs was driven by the improvement brought by these tRNAs to the synthesis of proteins highly enriched in certain amino acids.


Assuntos
Evolução Molecular , Inosina , RNA de Transferência/genética , Animais , Oenococcus/genética , Filogenia , Proteoma , Tetrahymena thermophila/genética
3.
Biochemistry ; 56(31): 4029-4038, 2017 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-28703578

RESUMO

Transfer RNAs (tRNAs) are among the most heavily modified RNA species. Posttranscriptional tRNA modifications (ptRMs) play fundamental roles in modulating tRNA structure and function and are being increasingly linked to human physiology and disease. Detection of ptRMs is often challenging, expensive, and laborious. Restriction fragment length polymorphism (RFLP) analyses study the patterns of DNA cleavage after restriction enzyme treatment and have been used for the qualitative detection of modified bases on mRNAs. It is known that some ptRMs induce specific and reproducible base "mutations" when tRNAs are reverse transcribed. For example, inosine, which derives from the deamination of adenosine, is detected as a guanosine when an inosine-containing tRNA is reverse transcribed, amplified via polymerase chain reaction (PCR), and sequenced. ptRM-dependent base changes on reverse transcription PCR amplicons generated as a consequence of the reverse transcription reaction might create or abolish endonuclease restriction sites. The suitability of RFLP for the detection and/or quantification of ptRMs has not been studied thus far. Here we show that different ptRMs can be detected at specific sites of different tRNA types by RFLP. For the examples studied, we show that this approach can reliably estimate the modification status of the sample, a feature that can be useful in the study of the regulatory role of tRNA modifications in gene expression.


Assuntos
Adenosina Desaminase/metabolismo , Modelos Biológicos , Polimorfismo de Fragmento de Restrição , Processamento Pós-Transcricional do RNA , RNA de Transferência de Alanina/metabolismo , RNA de Transferência de Treonina/metabolismo , Adenosina/metabolismo , Adenosina Desaminase/química , Adenosina Desaminase/genética , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Pareamento de Bases , Biologia Computacional , Desaminação , Sistemas Inteligentes , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Inosina/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , RNA de Transferência de Alanina/antagonistas & inibidores , RNA de Transferência de Treonina/antagonistas & inibidores , RNA de Transferência de Valina/antagonistas & inibidores , RNA de Transferência de Valina/metabolismo , Transcrição Reversa , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...