Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(5)2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35270944

RESUMO

Parkinson's disease is a chronic neurodegenerative disease that affects a large portion of the population, especially the elderly. It manifests with motor, cognitive and other types of symptoms, decreasing significantly the patients' quality of life. The recent advances in the Internet of Things and Artificial Intelligence fields, including the subdomains of machine learning and deep learning, can support Parkinson's disease patients, their caregivers and clinicians at every stage of the disease, maximizing the treatment effectiveness and minimizing the respective healthcare costs at the same time. In this review, the considered studies propose machine learning models, trained on data acquired via smart devices, wearable or non-wearable sensors and other Internet of Things technologies, to provide predictions or estimations regarding Parkinson's disease aspects. Seven hundred and seventy studies have been retrieved from three dominant academic literature databases. Finally, one hundred and twelve of them have been selected in a systematic way and have been considered in the state-of-the-art systematic review presented in this paper. These studies propose various methods, applied on various sensory data to address different Parkinson's disease-related problems. The most widely deployed sensors, the most commonly addressed problems and the best performing algorithms are highlighted. Finally, some challenges are summarized along with some future considerations and opportunities that arise.


Assuntos
Internet das Coisas , Doenças Neurodegenerativas , Doença de Parkinson , Idoso , Inteligência Artificial , Humanos , Aprendizado de Máquina , Doença de Parkinson/diagnóstico , Doença de Parkinson/terapia , Qualidade de Vida
2.
Sensors (Basel) ; 19(13)2019 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-31324012

RESUMO

One of the most significant challenges in Internet of Things (IoT) environments is the protection of privacy. Failing to guarantee the privacy of sensitive data collected and shared over IoT infrastructures is a critical barrier that delays the wide penetration of IoT technologies in several user-centric application domains. Location information is the most common dynamic information monitored and lies among the most sensitive ones from a privacy perspective. This article introduces a novel mechanism that aims to protect the privacy of location information across Data Centric Sensor Networks (DCSNs) that monitor the location of mobile objects in IoT systems. The respective data dissemination protocols proposed enhance the security of DCSNs rendering them less vulnerable to intruders interested in obtaining the location information monitored. In this respect, a dynamic clustering algorithm is that clusters the DCSN nodes not only based on the network topology, but also considering the current location of the objects monitored. The proposed techniques do not focus on the prevention of attacks, but on enhancing the privacy of sensitive location information once IoT nodes have been compromised. They have been extensively assessed via series of experiments conducted over the IoT infrastructure of FIT IoT-LAB and the respective evaluation results indicate that the dynamic clustering algorithm proposed significantly outperforms existing solutions focusing on enhancing the privacy of location information in IoT.

3.
Sensors (Basel) ; 19(3)2019 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-30717464

RESUMO

A Cyber-Physical Social System (CPSS) tightly integrates computer systems with the physical world and human activities. In this article, a three-level CPSS for early fire detection is presented to assist public authorities to promptly identify and act on emergency situations. At the bottom level, the system's architecture involves IoT nodes enabled with sensing and forest monitoring capabilities. Additionally, in this level, the crowd sensing paradigm is exploited to aggregate environmental information collected by end user devices present in the area of interest. Since the IoT nodes suffer from limited computational energy resources, an Edge Computing Infrastructure, at the middle level, facilitates the offloaded data processing regarding possible fire incidents. At the top level, a decision-making service deployed on Cloud nodes integrates data from various sources, including users' information on social media, and evaluates the situation criticality. In our work, a dynamic resource scaling mechanism for the Edge Computing Infrastructure is designed to address the demanding Quality of Service (QoS) requirements of this IoT-enabled time and mission critical application. The experimental results indicate that the vertical and horizontal scaling on the Edge Computing layer is beneficial for both the performance and the energy consumption of the IoT nodes.

4.
Sensors (Basel) ; 19(3)2019 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-30691223

RESUMO

One of the main obstacles towards the promotion of IoT adoption and innovation is data interoperability. Facilitating cross-domain interoperability is expected to be the core element for the realisation of the next generation of the IoT computing paradigm that is already taking shape under the name of Internet of Everything (IoE). In this article, an analysis of the current status on IoT semantic interoperability is presented that leads to the identification of a set of generic requirements that act as fundamental design principles for the specification of interoperability enabling solutions. In addition, an extension of NGSIv2 data model and API (de-facto) standards is proposed aiming to bridge the gap among IoT and social media and hence to integrate user communities with cyber-physical systems. These specifications have been utilised for the implementation of the IoT2Edge interoperability enabling mechanism which is evaluated within the context of a catastrophic wildfire incident that took place in Greece on July 2018. Weather data, social media activity, video recordings from the fire, sensor measurements and satellite data, linked to the location and the time of this fire incident have been collected, modeled in a uniform manner and fed to an early fire detection decision support system. The findings of the experiment certify that achieving minimum data interoperability with light-weight, plug-n-play mechanisms can be realised with significant benefits for our society.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...