Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 40(3): 1785-1792, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38198594

RESUMO

The use of large surface area carbon materials as transducers in solid-contact ion-selective electrodes (ISEs) has become widespread. Desirable qualities of ISEs, such as a small long-term drift, have been associated with a high capacitance that arises from the formation of an electrical double layer at the interface of the large surface area carbon material and the ion-selective membrane. The capacitive properties of these ISEs have been observed using a variety of techniques, but the effects of the ions present in the ion-selective membrane on the measured value of the capacitance have not been studied in detail. Here, it is shown that changes in the size and concentration of the ions in the ion-selective membrane as well as the polarity of the polymeric matrix result in capacitances that can vary by up to several hundred percent. These data illustrate that the interpretation of comparatively small differences in capacitance for different types of solid contacts is not meaningful unless the composition of the ion-selective membrane is taken into account.

2.
ECS Sens Plus ; 2(4): 042401, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38152504

RESUMO

Electrochemical, aptamer-based (E-AB) sensors provide a generalizable strategy to quantitatively detect a variety of targets including small molecules and proteins. The key signaling attributes of E-AB sensors (sensitivity, selectivity, specificity, and reagentless and dynamic sensing ability) make them well suited to monitor dynamic processes in complex environments. A key bioanalytical challenge that could benefit from the detection capabilities of E-AB sensors is that of cell signaling, which involves the release of molecular messengers into the extracellular space. Here, we provide a perspective on why E-AB sensors are suited for this measurement, sensor requirements, and pioneering examples of cellular signaling measurements.

3.
Anal Sci ; 38(1): 71-83, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35287207

RESUMO

A vital part of almost every experimental electrochemical set up is the reference electrode. As the development of working and indicator electrodes progresses to sensors with greater long-term stability and efficiency, it is important for reference electrodes to keep up with that progress. In this review, the deficiencies of commonly used reference electrodes are discussed, and recent work in the development of new reference electrode designs for more stable and reliable electrochemical experiments is highlighted. This encompasses work with salt-bridge reference electrodes comprising nanoporous and capillary junctions, solid-contact reference electrodes, and ionic liquid-based reference electrodes.


Assuntos
Líquidos Iônicos , Nanoporos , Eletroquímica , Eletrodos
4.
Anal Chem ; 94(2): 1143-1150, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34932309

RESUMO

Solid-contact ion-selective electrodes (ISEs) with an unintentional water layer between the sensing membrane and underlying electron conductor are well known to suffer from potential drift caused by the instability of the phase boundary potential between the sensing membrane and the water layer with its uncontrolled ionic composition. The reproducibility and long-term emf stability of ISEs with a miniaturized inner filling solution comprising a hydrogel and a hydrophilic electrolyte have not been studied as thoroughly. Here, such devices are discussed with a view to electrode-to-electrode reproducibility, using both hydrophilic ion-exchange and plasticized PVC membranes, along with a hydrophilic redox buffer composed of ferrocyanide and ferricyanide to control the potential between the hydrogel and the underlying electron conductor. With plasticized PVC sensing membranes, these electrodes showed an E0 reproducibility of ±1.1 mV or better, while with hydrophilic ion-exchange membranes, this variability was slightly larger. Long-term drifts were also assessed with both membranes, and the effect of osmotic pressure on drift was shown to be insignificant for the PVC membranes and very small at most for the hydrophilic membranes.


Assuntos
Hidrogéis , Eletrodos Seletivos de Íons , Eletrodos , Oxirredução , Reprodutibilidade dos Testes , Transdutores
5.
Anal Chem ; 90(18): 11000-11007, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30141325

RESUMO

While ion-selective electrodes (ISEs) with inner filling solutions are used widely, solid-contact ISEs are better suited for miniaturization and mass manufacturing. Calibration-free measurements with such electrodes require the reproducible control of the phase boundary potential between the ion-selective membrane and the underlying electron conductor. The most promising approach to achieve this goal is based on redox buffers incorporated into the ion-selective membrane. Here we introduce the theory and present experimental data for Co(III), Co(II), Ru(II), Fe(II), and Os(II) compounds that show quantitatively how the phase boundary potential at a solid contact doped with redox-active compounds is affected by weighing errors, reagent impurities, and redox-active interferents. Perhaps surprisingly, theory predicts that there is only a minimal dependence of the phase boundary potential on the ratio of the concentrations of a pure oxidized and a pure reduced compounds if those two compounds are not a redox couple. However, theory predicts that even small redox-active impurities of those compounds shift the phase boundary potential drastically. Experimentally, a surprisingly good in-batch reproducibility was observed by us and others for solid contacts prepared to contain either only the reduced or only the oxidized species of a redox couple. This can be explained by redox-active impurities and is unlikely to be repeatable when different suppliers of reagents are used or long-term experiments are performed. This work confirms that the preferred approach to calibration-free sensing is based on redox buffers that comprise the reduced and oxidized species of a redox couple in well-controlled concentrations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...