Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Radiat Prot Dosimetry ; 189(3): 401-405, 2020 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-32367128

RESUMO

Inhalation doses due to radon and thoron are predominantly due to the inhalation of progeny of Radon and Thoron. The progeny/decay-products of radon and thoron are particulates unlike their parent gas and exhibit different physical properties like attachment to the aerosols and deposition on different surfaces. All these properties in turn depend on the environmental conditions such as air velocity, aerosol concentration, attachment rate, etc. The role of air velocity on deposition on surfaces decides the progeny particles left in the air for inhalation. Therefore, in the present work, we have studied the effect of air velocity on the inhalation dose due to radon and thoron progeny at the centre of a 0.5-m3 calibration chamber as well as on all surfaces. Hence, the studies were carried out at different air velocities, and inhalation doses were measured using deposition-based direct radon and thoron progeny sensors.


Assuntos
Poluentes Radioativos do Ar , Poluição do Ar em Ambientes Fechados , Monitoramento de Radiação , Radônio , Poluentes Radioativos do Ar/análise , Poluição do Ar em Ambientes Fechados/análise , Habitação , Radônio/análise , Produtos de Decaimento de Radônio/análise
2.
Sci Total Environ ; 579: 1855-1862, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27939079

RESUMO

The radioactive noble gas radon (222Rn) and its decay products have been considered a health risk in the indoor environment for many years because of their contribution to the radiation dose of the lungs. The radioisotope thoron (220Rn) and its decay products came into focus of being a health risk only recently. The reason for this is its short half-life, so only building material can become a significant source for indoor thoron. In this study, dwellings with earthen architecture were investigated with different independent measurement techniques in order to determine appropriate methods for reliable dose assessment of the dwellers. While for radon dose assessment, radon gas measurement and the assumption of a common indoor equilibrium factor often are sufficient, thoron gas has proven to be an unreliable surrogate for a direct measurement of thoron decay products. Active/time-resolved but also passive/integrating measurements of the total concentration of thoron decay products demonstrated being precise and efficient methods for determining the exposure and inhalation dose from thoron and its decay products. Exhalation rate measurements are a useful method for a rough dose estimate only if the exhalation rate is homogeneous throughout the house. Before the construction of a building in-vitro exhalation rate measurements on the building material can yield information about the exposure that is to be expected. Determining the unattached fraction of radon decay products and even more of thoron decay products leads to only a slightly better precision; this confirms the relative unimportance of the unattached thoron decay products due to their low concentration. The results of this study thereby give advice on the proper measurement method in similar exposure situations.


Assuntos
Poluentes Radioativos do Ar/análise , Poluição do Ar em Ambientes Fechados/análise , Exposição por Inalação/estatística & dados numéricos , Monitoramento de Radiação/métodos , Radônio/análise , Poluição do Ar em Ambientes Fechados/estatística & dados numéricos , Arquitetura , Exposição Ambiental , Meia-Vida , Habitação , Produtos de Decaimento de Radônio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA