Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 30(7)2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29315841

RESUMO

Nanomaterials such as silver nanoparticles and graphene-based composites are known to exhibit biocidal activities. However, interactions with surrounding medium or supporting substrates can significantly influence this activity. Here, it is shown that superior antimicrobial properties of natural shellac-derived graphene oxide (GO) coatings is obtained on metallic films, such as Zn, Ni, Sn, and steel. It is also found that such activities are directly correlated to the electrical conductivity of the GO-metal systems; the higher the conductivity the better is the antibacterial activity. GO-metal substrate interactions serve as an efficient electron sink for the bacterial respiratory pathway, where electrons modify oxygen containing functional groups on GO surfaces to generate reactive oxygen species (ROS). A concerted effect of nonoxidative electron transfer mechanism and consequent ROS mediated oxidative stress to the bacteria result in an enhanced antimicrobial action of naturally derived GO-metal films. The lack of germicidal effect in exposed cells for GO supported on electrically nonconductive substrates such as glass corroborates the above hypothesis. The results can lead to new GO coated antibacterial metal surfaces important for environmental and biomedical applications.

2.
ACS Appl Mater Interfaces ; 5(21): 10650-7, 2013 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-24083362

RESUMO

Harvesting waste energy through electromechanical coupling in practical devices requires combining device design with the development of synthetic strategies for large-area controlled fabrication of active piezoelectric materials. Here, we show a facile route to the large-area fabrication of ZnO nanostructured arrays using commodity galvanized steel as the Zn precursor as well as the substrate. The ZnO nanowires are further integrated within a device construct and the effective piezoelectric response is deduced based on a novel experimental approach involving induction of stress in the nanowires through pressure wave propagation along with phase-selective lock-in detection of the induced current. The robust methodology for measurement of the effective piezoelectric coefficient developed here allows for interrogation of piezoelectric functionality for the entire substrate under bending-type deformation of the ZnO nanowires.


Assuntos
Nanofios/química , Aço/química , Óxido de Zinco/química , Nanotecnologia/métodos , Especificidade por Substrato
3.
ACS Appl Mater Interfaces ; 3(4): 1238-44, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21425803

RESUMO

We report here a facile, generalizable, and entirely scalable approach for the fabrication of vertically aligned arrays of Fe(2)O(3)/polypyrrole core-shell nanostructures and polypyrrole nanotubes. Our "all electrochemical" approach is based on the fabrication of α-Fe(2)O(3) nanowire arrays by the simple heat treatment of commodity low carbon steel substrates, followed by electropolymerization of conformal polypyrrole sheaths around the nanowires. Subsequently, electrochemical etching of the nanowires yields large-area vertically aligned polypyrrole nanotube arrays on the steel substrate. The developed methodology is generalizable to functionalized pyrrole monomers and represents a significant practical advance of relevance to the technological implementation of conjugated polymer nanostructures in electrochromics, electrochemical energy storage, and sensing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...