Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecology ; 90(6): 1540-8, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19569369

RESUMO

The mating system of self-compatible plants may fluctuate between years in response to ecological factors that cause variation in the deposition of self pollen vs. outcross pollen on stigmas. Such temporal variation may have significant ecological and evolutionary consequences, but it has rarely been studied, and the mechanisms that mediate temporal variation have almost never been investigated. We tested for variation in the proportion of seeds self-fertilized (s) between two years within 19 populations of the short-lived herb Aquilegia canadensis. Selfing varied widely among populations (range in s = 0.17-1.00, mean s = 0.82) but was inconsistent across years, indicating significant temporal variation. Three populations exhibited especially wide swings in the mating system between years. Mean s did not decrease with increasing population size (N), nor was the fluctuation in s associated with mean N or the change in N. As expected, s declined with increasing separation between anthers and stigmas within flowers (herkogamy), and s fluctuated to a greater extent in populations with more herkogamous flowers. Self-compatible plants can experience wide temporal variation in self-fertilization, and floral traits such as herkogamy may mediate temporal variation by forestalling self-pollination and thus allowing outcrossing during periods when pollinators are frequent.


Assuntos
Aquilegia/fisiologia , Flores/fisiologia , Modelos Biológicos , Modelos Estatísticos , Dinâmica Populacional , Reprodução/fisiologia , Fatores de Tempo
2.
Evolution ; 62(1): 157-72, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18067573

RESUMO

Hermaphroditism allows considerable scope for contributing genes to subsequent generations through various mixtures of selfed and outcrossed offspring. The fitness consequences of different family compositions determine the evolutionarily stable mating strategy and depend on the interplay of genetic features, the nature of mating, and factors that govern offspring development. This theoretical article considers the relative contributions of these influences and their interacting effects on mating-system evolution, given a fixed genetic load within a population. Strong inbreeding depression after offspring gain independence selects for exclusive outcrossing, regardless of the intensity of predispersal inbreeding depression, unless insufficient mating limits offspring production. The extent to which selfing evolves under weak postdispersal inbreeding depression depends on predispersal inbreeding depression and the opportunity for resource limitation of offspring production. Mixed selfing and outcrossing is an evolutionarily stable strategy (ESS) if selfed zygotes survive poorly, but selfed offspring survive well, and maternal individuals produce enough "extra" eggs that deaths of unviable outcrossed embryos do not impact offspring production (reproductive compensation). Mixed mating can also be an ESS, despite weak lifetime inbreeding depression, if self-mating reduces the number of male gametes available for outcrossing (male-gamete discounting). Reproductive compensation and male-gamete discounting act largely independently on mating-system evolution. ESS mating systems always involve either complete fertilization or fertilization of enough eggs to induce resource competition among embryos, so although reproductive assurance is adaptive with insufficient mating, it is never an ESS. Our results illustrate the theoretical importance of different constraints on offspring production (availability of male gametes, egg production, and maternal resources) for both the course and outcome of mating-system evolution, whereas unequal competition between selfed and outcrossed embryos has limited effect. These results also underscore the significance of heterogeneity in the nature and intensity of inbreeding depression during the life cycle for the evolution of hermaphrodite mating systems.


Assuntos
Evolução Biológica , Endogamia , Modelos Biológicos , Plantas/genética , Transtornos do Desenvolvimento Sexual , Reprodução
3.
Am J Bot ; 91(9): 1326-32, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21652365

RESUMO

Clonal growth in plants can increase pollen and ovule production per genet. However, paternal and maternal reproductive success may not increase because within-clone pollination (geitonogamy) can reduce pollen export to adjacent clones (pollen discounting) and pollen import to the central ramets (pollen limitation). The relationship between clone size and mating success was investigated using clones of Malus × domestica at four orchards (blocks of 1-5 rows of trees). For each block, maternal function was measured as fruit and seed set in all rows and paternal function as siring rate estimated from isozyme profiles in the first row of the adjacent block. Expected relations between reproductive success and clone size were generated from simulations and data on pollen dispersal in this species. Siring rate per clone averaged 70% and did not increase significantly with block size, consistent with simulations of pollen dispersal under pollen discounting. Simulations also indicated that the ratio of compatible to incompatible pollen received by a tree should decline with increased block size and from the periphery to the center of blocks. However, female function was not significantly reduced among block sizes or within blocks. The results suggest that paternal function may be more sensitive to the effects of clonality than female function.

4.
Evolution ; 57(2): 240-8, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12683521

RESUMO

Protandry, a form of temporal separation of gender within hermaphroditic flowers, may reduce the magnitude of pollen lost to selfing (pollen discounting) and also serve to enhance pollen export and outcross siring success. Because pollen discounting is strongest when selfing occurs between flowers on the same plant, the advantage of protandry may be greatest in plants with large floral displays. We tested this hypothesis with enclosed, artificial populations of Chamerion angustifolium (Onagraceae) by experimentally manipulating protandry (producing uniformly adichogamous or mixed protandrous and adichogamous populations) and inflorescence size (two-, six-, or 10-flowered inflorescences) and measuring pollinator visitation, seed set, female outcrossing rate, and outcross siring success. Bees spent more time foraging on and visited more flowers of larger inflorescences than small. Female outcrossing rates did not vary among inflorescence size treatments. However, seed set per fruit decreased with increasing inflorescence size, likely as a result of increased abortion of selfed embryos, perhaps obscuring the magnitude of geitonogamous selfing. Protandrous plants had a marginally higher female outcrossing rate than adichogamous plants, but similar seed set. More importantly, protandrous plants had, on average, a twofold siring advantage relative to adichogamous plants. However, this siring advantage did not increase linearly with inflorescence size, suggesting that protandry acts to enhance siring success, but not exclusively by reducing between-flower interference.


Assuntos
Epilobium/fisiologia , Evolução Biológica , Epilobium/crescimento & desenvolvimento , Flores/crescimento & desenvolvimento , Flores/fisiologia , Pólen/fisiologia , Reprodução , Sementes/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...