Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Life (Basel) ; 12(11)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36431043

RESUMO

The rise in the world's food demand with the increasing population threatens the existence of civilization with two equally valuable concerns: increase in global food production and sustainability in the ecosystem. Furthermore, biotic and abiotic stresses are adversely affecting agricultural production. Among them, losses caused by insect pests and pathogens have been shown to be more destructive to agricultural production. However, for winning the battle against the abundance of insect pests and pathogens and their nature of resistance development, the team of researchers is searching for an alternative way to minimize losses caused by them. Chitosan, a natural biopolymer, coupled with a proper application method and effective dose could be an integral part of sustainable alternatives in the safer agricultural sector. In this review, we have integrated the insight knowledge of chitin-chitosan interaction, successful and efficient use of chitosan, recommended and practical methods of use with well-defined doses, and last but not least the dual but contrast mode of action of the chitosan in hosts and as well as in pathogens.

2.
Plants (Basel) ; 11(4)2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35214830

RESUMO

Proline-rich extensin-like receptor kinases (PERKs) are a class of receptor kinases implicated in multiple cellular processes in plants. However, there is a lack of information on the PERK gene family in wheat. Therefore, we identified 37 PERK genes in wheat to understand their role in various developmental processes and stress conditions. Phylogenetic analysis of PERK genes from Arabidopsis thaliana, Oryza sativa, Glycine max, and T. aestivum grouped them into eight well-defined classes. Furthermore, synteny analysis revealed 275 orthologous gene pairs in B. distachyon, Ae. tauschii, T. dicoccoides, O. sativa and A. thaliana. Ka/Ks values showed that most TaPERK genes, except TaPERK1, TaPERK2, TaPERK17, and TaPERK26, underwent strong purifying selection during evolutionary processes. Several cis-acting regulatory elements, essential for plant growth and development and the response to light, phytohormones, and diverse biotic and abiotic stresses, were predicted in the promoter regions of TaPERK genes. In addition, the expression profile of the TaPERK gene family revealed differential expression of TaPERK genes in various tissues and developmental stages. Furthermore, TaPERK gene expression was induced by various biotic and abiotic stresses. The RT-qPCR analysis also revealed similar results with slight variation. Therefore, this study's outcome provides valuable information for elucidating the precise functions of TaPERK in developmental processes and diverse stress conditions in wheat.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...