Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Clin Cancer Res ; 43(1): 157, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824552

RESUMO

Phosphoinositide-3-kinase γ (PI3Kγ) plays a critical role in pancreatic ductal adenocarcinoma (PDA) by driving the recruitment of myeloid-derived suppressor cells (MDSC) into tumor tissues, leading to tumor growth and metastasis. MDSC also impair the efficacy of immunotherapy. In this study we verify the hypothesis that MDSC targeting, via PI3Kγ inhibition, synergizes with α-enolase (ENO1) DNA vaccination in counteracting tumor growth.Mice that received ENO1 vaccination followed by PI3Kγ inhibition had significantly smaller tumors compared to those treated with ENO1 alone or the control group, and correlated with i) increased circulating anti-ENO1 specific IgG and IFNγ secretion by T cells, ii) increased tumor infiltration of CD8+ T cells and M1-like macrophages, as well as up-modulation of T cell activation and M1-like related transcripts, iii) decreased infiltration of Treg FoxP3+ T cells, endothelial cells and pericytes, and down-modulation of the stromal compartment and T cell exhaustion gene transcription, iv) reduction of mature and neo-formed vessels, v) increased follicular helper T cell activation and vi) increased "antigen spreading", as many other tumor-associated antigens were recognized by IgG2c "cytotoxic" antibodies. PDA mouse models genetically devoid of PI3Kγ showed an increased survival and a pattern of transcripts in the tumor area similar to that of pharmacologically-inhibited PI3Kγ-proficient mice. Notably, tumor reduction was abrogated in ENO1 + PI3Kγ inhibition-treated mice in which B cells were depleted.These data highlight a novel role of PI3Kγ in B cell-dependent immunity, suggesting that PI3Kγ depletion strengthens the anti-tumor response elicited by the ENO1 DNA vaccine.


Assuntos
Vacinas de DNA , Animais , Camundongos , Vacinas de DNA/farmacologia , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/patologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Classe Ib de Fosfatidilinositol 3-Quinase/metabolismo , Humanos , Linhagem Celular Tumoral , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/farmacologia , Modelos Animais de Doenças , Células Supressoras Mieloides/imunologia , Células Supressoras Mieloides/metabolismo
2.
Antioxidants (Basel) ; 10(3)2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33802061

RESUMO

BACKGROUND: Interleukin (IL)17A is a member of the IL17 cytokine family, which is released by both immune and non-immune cells such as tumor and stromal cells into the tumor microenvironment. IL17 receptors are also widely expressed in different type of cells. Among all the members, IL17A is the most controversial in regulating tumor immunity. Here, we investigated how IL17A inhibition modulated macrophage differentiation and metabolism in the presence or absence of gemcitabine. Gemcitabine is the gold standard drug for treating pancreatic cancer and can increase macrophage antitumoral activities. RESULTS: We observed some unique features of macrophages polarized in the absence of IL17A, in terms of RNA and protein expression of typical phenotypic markers, and we demonstrated that this paralleled specific changes in their metabolism and functions, such as the induction of an antitumor response. Interestingly, these features were almost maintained or enhanced when macrophages were treated with gemcitabine. We also demonstrated that the anti-IL17A antibody effectively reproduced features of macrophages derived from IL17A knock-out mice. CONCLUSION: Overall, we provide a proof-of-concept that combining an anti-IL17A antibody with gemcitabine may represent an effective strategy to modulate macrophages and enhance the anti-tumor response, especially in pancreatic cancer where gemcitabine is widely used.

3.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33526692

RESUMO

A hallmark of cancer, including pancreatic ductal adenocarcinoma (PDA), is a massive stromal and inflammatory reaction. Many efforts have been made to identify the anti- or protumoral role of cytokines and immune subpopulations within the stroma. Here, we investigated the role of interleukin-17A (IL17A) and its effect on tumor fibroblasts and the tumor microenvironment. We used a spontaneous PDA mouse model (KPC) crossed to IL17A knockout mice to show an extensive desmoplastic reaction, without impaired immune infiltration. Macrophages, especially CD80+ and T cells, were more abundant at the earlier time point. In T cells, a decrease in FoxP3+ cells and an increase in CD8+ T cells were observed in KPC/IL17A-/- mice. Fibroblasts isolated from IL17A+/+ and IL17A-/- KPC mice revealed very different messenger RNA (mRNA) and protein profiles. IL17A-/- fibroblasts displayed the ability to restrain tumor cell invasion by producing factors involved in extracellular matrix remodeling, increasing T cell recruitment, and producing higher levels of cytokines and chemokines favoring T helper 1 cell recruitment and activation and lower levels of those recruiting myeloid/granulocytic immune cells. Single-cell quantitative PCR on isolated fibroblasts confirmed a very divergent profile of IL17A-proficient and -deficient cells. All these features can be ascribed to increased levels of IL17F observed in the sera of IL17A-/- mice, and to the higher expression of its cognate receptor (IL17RC) specifically in IL17A-/- cancer-associated fibroblasts (CAFs). In addition to the known effects on neoplastic cell transformation, the IL17 cytokine family uniquely affects fibroblasts, representing a suitable candidate target for combinatorial immune-based therapies in PDA.


Assuntos
Adenocarcinoma/genética , Carcinoma Ductal Pancreático/genética , Interleucina-17/genética , Receptores de Interleucina/genética , Adenocarcinoma/patologia , Animais , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/patologia , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Carcinogênese/genética , Carcinoma Ductal Pancreático/patologia , Modelos Animais de Doenças , Fatores de Transcrição Forkhead/genética , Humanos , Camundongos , Camundongos Knockout , Microambiente Tumoral/genética
4.
iScience ; 23(7): 101296, 2020 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-32622267

RESUMO

Proper immune system function hinders cancer development, but little is known about whether genetic variants linked to cancer risk alter immune cells. Here, we report 57 cancer risk loci associated with differences in immune and/or stromal cell contents in the corresponding tissue. Predicted target genes show expression and regulatory associations with immune features. Polygenic risk scores also reveal associations with immune and/or stromal cell contents, and breast cancer scores show consistent results in normal and tumor tissue. SH2B3 links peripheral alterations of several immune cell types to the risk of this malignancy. Pleiotropic SH2B3 variants are associated with breast cancer risk in BRCA1/2 mutation carriers. A retrospective case-cohort study indicates a positive association between blood counts of basophils, leukocytes, and monocytes and age at breast cancer diagnosis. These findings broaden our knowledge of the role of the immune system in cancer and highlight promising prevention strategies for individuals at high risk.

5.
Cancer Drug Resist ; 3(3): 491-520, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-35582441

RESUMO

Since the journal Science deemed cancer immunotherapy as the "breakthrough of the year" in 2014, there has been an explosion of clinical trials involving immunotherapeutic approaches that, in the last decade - thanks also to the renaissance of the immunosurveillance theory (renamed the three Es theory) - have been continuously and successfully developed. In the latest update of the development of the immuno-oncology drug pipeline, published last November by Nature Review Drug Discovery, it was clearly reported that the immunoactive drugs under study almost doubled in just two years. Of the different classes of passive and active immunotherapies, "cell therapy" is the fastest growing. The aim of this review is to discuss the preclinical and clinical studies that have focused on different immuno-oncology approaches applied to pancreatic cancer, which we assign to the "dark side" of immunotherapy, in the sense that it represents one of the solid tumors showing less response to this type of therapeutic strategy.

6.
Proc Natl Acad Sci U S A ; 116(10): 4326-4335, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30770442

RESUMO

The combination of immune checkpoint blockade with chemotherapy is currently under investigation as a promising strategy for the treatment of triple negative breast cancer (TNBC). Tumor-associated macrophages (TAMs) are the most prominent component of the breast cancer microenvironment because they influence tumor progression and the response to therapies. Here we show that macrophages acquire an immunosuppressive phenotype and increase the expression of programmed death ligand-1 (PD-L1) when treated with reactive oxygen species (ROS) inducers such as the glutathione synthesis inhibitor, buthionine sulphoximine (BSO), and paclitaxel. Mechanistically, these agents cause accumulation of ROS that in turn activate NF-κB signaling to promote PD-L1 transcription and the release of immunosuppressive chemokines. Systemic in vivo administration of paclitaxel promotes PD-L1 accumulation on the surface of TAMS in a mouse model of TNBC, consistent with in vitro results. Combinatorial treatment with paclitaxel and an anti-mouse PD-L1 blocking antibody significantly improved the therapeutic efficacy of paclitaxel by reducing tumor burden and increasing the number of tumor-associated cytotoxic T cells. Our results provide a strong rationale for the use of anti-PD-L1 blockade in the treatment of TNBC patients. Furthermore, interrogation of chemotherapy-induced PD-L1 expression in TAMs is warranted to define appropriate patient selection in the use of PD-L1 blockade.


Assuntos
Antígeno B7-H1/metabolismo , Imunossupressores/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Espécies Reativas de Oxigênio/farmacologia , Animais , Antígeno B7-H1/genética , Neoplasias da Mama/metabolismo , Butionina Sulfoximina/farmacologia , Linhagem Celular Tumoral , Quimiocinas , Tratamento Farmacológico , Feminino , Glutationa/metabolismo , Humanos , Camundongos , Paclitaxel/farmacologia , Fenótipo , RNA Mensageiro/metabolismo , Neoplasias de Mama Triplo Negativas , Microambiente Tumoral , Regulação para Cima
7.
Proc Natl Acad Sci U S A ; 116(9): 3604-3613, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30733286

RESUMO

Cancer cells have higher reactive oxygen species (ROS) than normal cells, due to genetic and metabolic alterations. An emerging scenario is that cancer cells increase ROS to activate protumorigenic signaling while activating antioxidant pathways to maintain redox homeostasis. Here we show that, in basal-like and BRCA1-related breast cancer (BC), ROS levels correlate with the expression and activity of the transcription factor aryl hydrocarbon receptor (AhR). Mechanistically, ROS triggers AhR nuclear accumulation and activation to promote the transcription of both antioxidant enzymes and the epidermal growth factor receptor (EGFR) ligand, amphiregulin (AREG). In a mouse model of BRCA1-related BC, cancer-associated AhR and AREG control tumor growth and production of chemokines to attract monocytes and activate proangiogenic function of macrophages in the tumor microenvironment. Interestingly, the expression of these chemokines as well as infiltration of monocyte-lineage cells (monocyte and macrophages) positively correlated with ROS levels in basal-like BC. These data support the existence of a coordinated link between cancer-intrinsic ROS regulation and the features of tumor microenvironment. Therapeutically, chemical inhibition of AhR activity sensitizes human BC models to Erlotinib, a selective EGFR tyrosine kinase inhibitor, suggesting a promising combinatorial anticancer effect of AhR and EGFR pathway inhibition. Thus, AhR represents an attractive target to inhibit redox homeostasis and modulate the tumor promoting microenvironment of basal-like and BRCA1-associated BC.


Assuntos
Anfirregulina/genética , Proteína BRCA1/genética , Neoplasias da Mama/genética , Receptores de Hidrocarboneto Arílico/genética , Adulto , Animais , Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Receptores ErbB/genética , Cloridrato de Erlotinib/administração & dosagem , Feminino , Regulação Neoplásica da Expressão Gênica , Homeostase/genética , Humanos , Camundongos , Pessoa de Meia-Idade , Oxirredução/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Microambiente Tumoral/genética
8.
Cancers (Basel) ; 10(2)2018 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-29462900

RESUMO

Pancreatic Ductal Adenocarcinoma (PDA) is an almost incurable radio- and chemo-resistant tumor, and its microenvironment is characterized by a strong desmoplastic reaction associated with a significant infiltration of T regulatory lymphocytes and myeloid-derived suppressor cells (Tregs, MDSC). Investigating immunological targets has identified a number of metabolic and cytoskeletal related molecules, which are typically recognized by circulating antibodies. Among these molecules we have investigated alpha-enolase (ENO1), a glycolytic enzyme that also acts a plasminogen receptor. ENO1 is also recognized by T cells in PDA patients, so we developed a DNA vaccine that targets ENO1. This efficiently induces many immunological processes (antibody formation and complement-dependent cytotoxicity (CDC)-mediated tumor killing, infiltration of effector T cells, reduction of infiltration of myeloid and Treg suppressor cells), which significantly increase the survival of genetically engineered mice that spontaneously develop pancreatic cancer. Although promising, the ENO1 DNA vaccine does not completely eradicate the tumor, which, after an initial growth inhibition, returns to proliferate again, especially when Tregs and MDSC ensue in the tumor mass. This led us to develop possible strategies for combinatorial treatments aimed to broaden and sustain the antitumor immune response elicited by DNA vaccination. Based on the data we have obtained in recent years, this review will discuss the biological bases of possible combinatorial treatments (chemotherapy, PI3K inhibitors, tumor-associated macrophages, ENO1 inhibitors) that could be effective in amplifying the response induced by the immune vaccination in PDA.

9.
Oncotarget ; 8(56): 95361-95376, 2017 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-29221133

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is becoming the second leading cause of cancer-related death in the Western world. The mortality is very high, which emphasizes the need to identify biomarkers for early detection. As glutamine metabolism alteration is a feature of PDAC, its in vivo evaluation may provide a useful tool for biomarker identification. Our aim was to identify a handy method to evaluate blood glutamine consumption in mouse models of PDAC. We quantified the in vitro glutamine uptake by Mass Spectrometry (MS) in tumor cell supernatants and showed that it was higher in PDAC compared to non-PDAC tumor and pancreatic control human cells. The increased glutamine uptake was paralleled by higher activity of most glutamine pathway-related enzymes supporting nucleotide and ATP production. Free glutamine blood levels were evaluated in orthotopic and spontaneous mouse models of PDAC and other pancreatic-related disorders by High-Performance Liquid Chromatography (HPLC) and/or MS. Notably we observed a reduction of blood glutamine as much as the tumor progressed from pancreatic intraepithelial lesions to invasive PDAC, but was not related to chronic pancreatitis-associated inflammation or diabetes. In parallel the increased levels of branched-chain amino acids (BCAA) were observed. By contrast blood glutamine levels were stable in non-tumor bearing mice. These findings demonstrated that glutamine uptake is measurable both in vitro and in vivo. The higher in vitro avidity of PDAC cells corresponded to a lower blood glutamine level as soon as the tumor mass grew. The reduction in circulating glutamine represents a novel tool exploitable to implement other diagnostic or prognostic PDAC biomarkers.

10.
Oncotarget ; 7(5): 5598-612, 2016 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-26734996

RESUMO

In the last 5 years, novel knowledge on tumor metabolism has been revealed with the identification of critical factors that fuel tumors. Alpha-enolase (ENO1) is commonly over-expressed in tumors and is a clinically relevant candidate molecular target for immunotherapy. Here, we silenced ENO1 in human cancer cell lines and evaluated its impact through proteomic, biochemical and functional approaches. ENO1 silencing increased reactive oxygen species that were mainly generated through the sorbitol and NADPH oxidase pathways, as well as autophagy and catabolic pathway adaptations, which together affect cancer cell growth and induce senescence. These findings represent the first comprehensive metabolic analysis following ENO1 silencing. Inhibition of ENO1, either alone, or in combination with other pathways which were perturbed by ENO1 silencing, opens novel avenues for future therapeutic approaches.


Assuntos
Autofagia , Biomarcadores Tumorais/antagonistas & inibidores , Neoplasias da Mama/patologia , Proteínas de Ligação a DNA/antagonistas & inibidores , Fosforilação Oxidativa , Neoplasias Pancreáticas/patologia , Fosfopiruvato Hidratase/antagonistas & inibidores , RNA Interferente Pequeno/genética , Proteínas Supressoras de Tumor/antagonistas & inibidores , Animais , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Western Blotting , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Ciclo Celular , Proliferação de Células , Reprogramação Celular , Proteínas de Ligação a DNA/genética , Feminino , Humanos , Camundongos , Camundongos SCID , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Fosfopiruvato Hidratase/genética , Proteômica , RNA Mensageiro/genética , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Espectrometria de Massas em Tandem , Células Tumorais Cultivadas , Proteínas Supressoras de Tumor/genética , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...