Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ultrasonics ; 114: 106376, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33578199

RESUMO

The backscatter coefficient (BSC) quantifies the frequency-dependent reflectivity of tissues. Accurate estimation of the BSC is only possible with the knowledge of the attenuation coefficient slope (ACS) of the tissues under examination. In this study, the use of attenuation maps constructed using full angular spatial compounding (FASC) is proposed for attenuation compensation when imaging integrated BSCs. Experimental validation of the proposed approach was obtained using two cylindrical physical phantoms with off-centered inclusions having different ACS and BSC values than the background, and in a phantom containing an ex vivo chicken breast sample embedded in an agar matrix. With the phantom data, three different ACS maps were employed for attenuation compensation: (1) a ground truth ACS map constructed using insertion loss techniques, (2) the estimated ACS map using FASC attenuation imaging, and (3) a uniform ACS map with a value of 0.5 dBcm\protect \relax \special {t4ht=-}1MHz\protect \relax \special {t4ht=-}1, which is commonly used to represent attenuation in soft tissues. Comparable results were obtained when using the ground truth and FASC-estimated ACS maps in term of inclusion detectability and estimation accuracy, with averaged fractional error below 2.8 dB in both phantoms. Conversely, the use of the homogeneous ACS map resulted in higher levels of fractional error (>10 dB), which demonstrates the importance of an accurate attenuation compensation. The results with the ex vivo tissue sample were consistent with the observations using the physical phantoms, with the FASC-derived ACS map providing comparable BSC images to those formed using the ground truth ACS map and more accurate than those BSC images formed using a uniform ACS. These results suggest that BSCs can be reliably estimated using FASC when a self-consistent attenuation compensation stemming from prior estimation of an accurate ACS map is used.

2.
J Acoust Soc Am ; 147(3): 1359, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32237850

RESUMO

Quantitative ultrasound techniques based on the parametrization of the backscatter coefficient (BSC) are used to characterize concentrated particle suspensions. Specifically, a scattering model is fit to the measured BSC and the fit parameters can provide local suspension properties. The scattering models generally assume an isotropic microstructure (i.e., spatial organization) of the scatterers, whereas the sheared concentrated suspensions can develop an anisotropic microstructure. This paper studied the influence of the shear-induced anisotropic microstructure of concentrated suspensions on the ultrasonic backscattering. Experiments were conducted on suspensions of polymethylmetacrylate spheres (5.8 µm in radius) sheared in a Couette flow device to obtain anisotropic microstructure and then mixed by hand to obtain isotropic microstructure. Experimental structure factors that are related to the spatial distribution of sphere positions were obtained by comparing the BSCs of one concentrated and one diluted suspension. Finally, Stokesian dynamics numerical simulations of sheared concentrated suspensions are used to determine the pair correlation function, which is linked to the Fourier transform of the structure factor. The experimental structure factors are found to be in good agreement with numerical simulations. The numerical simulation demonstrates that the angular-dependent BSCs and structure factors are caused by the shear-induced anisotropic microstructure within the suspension.

3.
J Acoust Soc Am ; 143(4): 2207, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29716254

RESUMO

Quantitative ultrasound techniques based on the backscatter coefficient (BSC) have been commonly used to characterize red blood cell (RBC) aggregation. Specifically, a scattering model is fitted to measured BSC and estimated parameters can provide a meaningful description of the RBC aggregates' structure (i.e., aggregate size and compactness). In most cases, scattering models assumed monodisperse RBC aggregates. This study proposes the Effective Medium Theory combined with the polydisperse Structure Factor Model (EMTSFM) to incorporate the polydispersity of aggregate size. From the measured BSC, this model allows estimating three structural parameters: the mean radius of the aggregate size distribution, the width of the distribution, and the compactness of the aggregates. Two successive experiments were conducted: a first experiment on blood sheared in a Couette flow device coupled with an ultrasonic probe, and a second experiment, on the same blood sample, sheared in a plane-plane rheometer coupled to a light microscope. Results demonstrated that the polydisperse EMTSFM provided the best fit to the BSC data when compared to the classical monodisperse models for the higher levels of aggregation at hematocrits between 10% and 40%. Fitting the polydisperse model yielded aggregate size distributions that were consistent with direct light microscope observations at low hematocrits.

4.
Artigo em Inglês | MEDLINE | ID: mdl-26955025

RESUMO

Fine-needle aspiration (FNA) remains the gold standard for the diagnosis of thyroid cancer. However, currently, a large number of FNA biopsies result in negative or undetermined diagnosis, which suggests that better noninvasive tools are needed for the clinical management of thyroid cancer. Spectral-based quantitative ultrasound (QUS) characterizations may offer a better diagnostic management as previously demonstrated in mouse cancer models ex vivo. As a first step toward understanding the potential of QUS markers for thyroid disease management, this paper deals with the spectral-based QUS estimation of healthy human thyroids in vivo. Twenty volunteers were inspected by a trained radiologist using two ultrasonic imaging systems, which allowed them to acquire radio-frequency data spanning the 3-16-MHz frequency range. Estimates of attenuation coefficient slope (ACS) using the spectral logarithmic difference method had an average value of [Formula: see text]) with a standard deviation of [Formula: see text]. Estimates of backscatter coefficient (BSC) using the reference-phantom method had an average value of [Formula: see text] over the useful frequency range. The intersubject variability when estimating BSCs was less than 1.5 dB over the analysis frequency range. Further, the effectiveness of three scattering models (i.e., fluid sphere, Gaussian, and exponential form factors) when fitting the experimentally estimated BSCs was assessed. The exponential form factor was found to provide the best overall goodness of fit ( R2 = 0.917), followed by the Gaussian ( R2 = 0.807) and the fluid-sphere models ( R2 = 0.752). For all scattering models used in this study, average estimates of the effective scatterer diameter were between 44 and 56 µm. Overall, an excellent agreement in the estimated attenuation and BSCs with both scanners was exhibited.


Assuntos
Glândula Tireoide/diagnóstico por imagem , Ultrassonografia , Humanos , Distribuição Normal , Imagens de Fantasmas
5.
Annu Int Conf IEEE Eng Med Biol Soc ; 2016: 2881-2884, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28268916

RESUMO

Tissue characterization using quantitative ultrasound (QUS) parameters has received significant attention in recent years due to its potential to improve the detection and diagnosis of diseased states. However, the vast majority of studies in QUS tissue typing have used parameters derived from either longitudinal or shear waves in isolation, thereby discarding potentially useful complementary information these parameters may carry. In this study, the simultaneous estimation of backscatter coefficients (derived from longitudinal waves) and shear modulus (derived from shear waves) was implemented on data from a clinical scanner. Both parameters were estimated from five ex vivo porcine kidney samples and used to calculate the anisotropy ratio in the parameters when analyzing the middle and pole regions of the kidneys. For all samples, the estimated parameters were higher in the pole regions than in the middle region, with anisotropy ratios of 1.42±0.11 and 3.07±0.70 for the shear modulus and the backscatter coefficient, respectively. Therefore, these results demonstrate that QUS parameters derived from both longitudinal and shear waves can be estimated simultaneously and may be used in conjunction to track changes in tissue structure and composition.


Assuntos
Módulo de Elasticidade , Técnicas de Imagem por Elasticidade/métodos , Rim/anatomia & histologia , Animais , Anisotropia , Rim/química , Suínos
6.
Ultrason Imaging ; 37(3): 205-23, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25270352

RESUMO

Pulse compression methods improve the quality of ultrasonic medical images. In comparison with standard broadband pulse techniques, these methods enhance the contrast-to-noise ratio (CNR) and increase the probing depth without any perceptible loss of spatial resolution. The Golay compression technique is analyzed here in the context of ultrasonic computed tomography, first on a one-dimensional target and second on a very low-contrast phantom probed using a half-ring array tomograph. The imaging performances were assessed based on the image CNR. The improvement obtained (up to 40%) depends, however, on the number of coherently associated diffraction projections. Beyond a certain number, few advantages were observed. Advances in ultrasound computed tomography suggest that pulse compression methods should provide a useful means of optimizing the trade-off between the image quality and the probing sampling density.


Assuntos
Compressão de Dados/métodos , Processamento de Imagem Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Ultrassonografia/métodos , Acústica , Algoritmos , Compressão de Dados/estatística & dados numéricos , Imagens de Fantasmas , Razão Sinal-Ruído
7.
Annu Int Conf IEEE Eng Med Biol Soc ; 2015: 1560-3, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26736570

RESUMO

Ultrasound attenuation is typically compensated for in clinical scanners by using time gain compensation (TGC). However, TGC operates in a frequency-independent fashion and therefore the spatial resolution of the echographic images degrades as the examination depth increases. In the current study, the capability of a multi-band attenuation compensation (MBAC) TGC technique to recover both magnitude and spatial resolution in lossy media was evaluated. Simulations were performed using a 5-MHz transducer for imaging point targets embedded in a medium with attenuation coefficient slope (ACS) of 0.5 dB/(cm.MHz). For performance assessment, the magnitude and spatial resolution of the reflected point spread functions (PSFs) were compared to the ones obtained from point targets embedded in a lossless medium. The results showed a complete recovery of the spectral content when using MBAC for all depths when compared to the lossless case. Both the magnitude and spatial resolution of the compensated PSFs were in agreement with the lossless result (i.e., less than 1 dB and 3 % difference in PSF magnitude and spatial resolution, respectively). The MBAC was then applied to in vivo liver imaging using a scanner equipped with a 5-MHz linear array. Attenuation compensation was performed using ACSs reported in the literature for skin, fat and muscle, and experimentally estimated ACS using the spectral log difference technique for the liver. The lateral and axial extent of the autocorrelation function was estimated in the liver tissue. The experimental MBAC image exhibited only 6 % and 11 % variation in speckle magnitude and lateral autocorrelation length for depths between 2.5 and 4 cm. These results suggest that MBAC technique may enhance speckle uniformity in homogeneous tissue regions.


Assuntos
Ultrassonografia , Fígado , Imagens de Fantasmas , Transdutores
8.
Artigo em Inglês | MEDLINE | ID: mdl-22828841

RESUMO

Ultrasound tomography has considerable potential as a means of breast cancer detection because it reduces the operator-dependency observed in echography. A half-ring transducer array was designed based on breast anatomy, to obtain reflectivity images of the ductolobular structures using tomographic reconstruction procedures. The 3-MHz transducer array comprises 1024 elements set in a 190-degree circular arc with a radius of 100 mm. The front-end electronics incorporate 32 independent parallel transmit/receive channels and a 32-to-1024 multiplexer unit. The transmit and receive circuitries have a variable sampling frequency of up to 80 MHz and 12-bit precision. Arbitrary waveforms are synthesized to improve the signal-to-noise ratio and to increase the spatial resolution when working with low-contrast objects. The setup was calibrated with academic objects and a needle hydrophone to develop the data correction tools and specify the properties of the system. The backscattering field was recorded using a restricted aperture, and tomographic acquisitions were performed with a pair of 0.08-mm-diameter steel wires, a low-contrast 2-D breast phantom, and a breast-shaped phantom containing inclusions. Data were processed with dedicated correction tools and a pulse compression technique. Objects were reconstructed using the elliptical back-projection algorithm.


Assuntos
Interpretação de Imagem Assistida por Computador/instrumentação , Armazenamento e Recuperação da Informação/métodos , Reconhecimento Automatizado de Padrão/métodos , Processamento de Sinais Assistido por Computador , Tomografia/instrumentação , Transdutores , Ultrassonografia Mamária/instrumentação , Algoritmos , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Aumento da Imagem/instrumentação , Imagens de Fantasmas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...