Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(14)2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37512203

RESUMO

This paper deals with the effect of the character of the water used for the water storage of concrete test specimens on the results of tests for resistance to de-icing chemicals. Two experiments were conducted to investigate the effect of the content of free CO2 in water and leaching of calcium hydroxide from concrete on the test results. In the first experiment, the resistance of mortars to water and de-icing chemicals was investigated. It was found that the character of the water storage, i.e., fresh water vs. previously used water, can significantly affect the test results. The second experiment focused on investigating the effect of the content of free CO2 in water on the test results. It was found that the content of free CO2 in the water can statistically significantly influence the test results. In conclusion, the paper shows that the character of the water used for water storage of concrete test specimens and the content of free CO2 in water are essential factors that can significantly affect the results of concrete resistance tests to de-icing chemicals. Further research is needed to understand these influences and their potential use to improve the resistance of concrete.

2.
Materials (Basel) ; 15(19)2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36234222

RESUMO

The presented research is focused on the complex assessment of three different types of diatomaceous earth and evaluation of their ability for application as pozzolana active admixtures applicable in the concrete industry and the production of repair mortars applicable for historical masonry. The comprehensive experimental campaign comprised chemical, mineralogical, microstructural, and physical testing of raw materials, followed by the analyses and characterization of pozzolanic activity, rheology and heat evolution of fresh blended pastes, and testing of macrostructural and mechanical parameters of the hardened 28-days and 90-days samples. The obtained results gave evidence of the different behavior of researched diatomaceous earth when mixed with water and Portland cement. The differences in heat evolution, initial and final setting time, porosity, density, and mechanical parameters were identified based on chemical and phase composition, particle size, specific surface, and morphology of diatomaceous particles. Nevertheless, the researched mineral admixtures yielded a high strength activity index (92.9% to 113.6%), evinced their pozzolanic activity. Three fundamental factors were identified that affect diatomaceous earth's contribution to the mechanical strength of cement blends. These are the filler effect, the pertinent acceleration of OPC hydration, and the pozzolanic reaction of diatomite with Portland cement hydrates. The optimum replacement level of ordinary Portland cement by diatomaceous earth to give maximum long-term strength enhancement is about 10 wt.%., but it might be further enhanced based on the properties of pozzolan.

3.
Sci Rep ; 7(1): 17260, 2017 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-29222495

RESUMO

In the study of lime as the basic component of historical mortars and plasters, four lime putties prepared from various kinds of lime of various granulometry and by various ways of preparation were evaluated. The rheological properties and micro-morphologic changes, growing of calcite crystals, and rate of carbonation were monitored. The lime putty prepared from lump lime achieves the best rheological properties, yield stress 214.7 Pa and plastic viscosity 2.6 Pa·s. The suitability of this lime putty was checked by testing the development of calcium hydroxide and calcite crystals using scanning electron microscopy and environmental scanning electron microscopy. The disordered crystals of calcium hydroxide exhibit better carbonation resulting in the large crystals of calcite; therefore, the mortar prepared from the lump lime has the highest flexural strength and compressive strength 0.8/2.5 MPa, its carbonation is the fastest and exhibits the longest durability. Also, thanks to the micro-morphological characterization of samples in their native state by means of environmental scanning electron microscopy, the new way of lime putty preparation by mixing was proven. The preparation consists in the mechanical crash of the lime particles immediately after hydration. This enables the properties of putty prepared from lump lime to be nearly reached.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...