Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Sci Total Environ ; 926: 171672, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38485014

RESUMO

Medical devices have increased in complexity where there is a pressing need to consider design thinking and specialist training for manufacturers, healthcare and sterilization providers, and regulators. Appropriately addressing this consideration will positively inform end-to-end supply chain and logistics, production, processing, sterilization, safety, regulation, education, sustainability and circularity. There are significant opportunities to innovate and to develop appropriate digital tools to help unlock efficiencies in these important areas. This constitutes the first paper to create an awareness of and to define different digital technologies for informing and enabling medical device production from a holistic end-to-end life cycle perspective. It describes the added-value of using digital innovations to meet emerging opportunities for many disposable and reusable medical devices. It addresses the value of accessing and using integrated multi-actor HUBs that combine academia, industry, healthcare, regulators and society to help meet these opportunities. Such as cost-effective access to specialist pilot facilities and expertise that converges digital innovation, material science, biocompatibility, sterility assurance, business model and sustainability. It highlights the marked gap in academic R&D activities (PRISMA review of best publications conducted between January 2010 and January 2024) and the actual list of U.S. FDA's approved and marketed artificial intelligence/machine learning (AI/ML), and augmented reality/virtual reality (AR/VR) enabled-medical devices for different healthcare applications. Bespoke examples of benefits underlying future use of digital tools includes potential implementation of machine learning for supporting and enabling parametric release of sterilized products through efficient monitoring of critical process data (complying with ISO 11135:2014) that would benefit stakeholders. This paper also focuses on the transformative potential of combining digital twin with extended reality innovations to inform efficiencies in medical device design thinking, supply chain and training to inform patient safety, circularity and sustainability.


Assuntos
Inteligência Artificial , Setor de Assistência à Saúde , Humanos , Tecnologia Digital , Indústrias , Escolaridade
2.
Front Public Health ; 11: 1203937, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37942252

RESUMO

It is appreciated that digital health is increasing in interest as an important area for efficiently standardizing and developing health services in Ireland, and worldwide. However, digital health is still considered to be in its infancy and there is a need to understand important factors that will support the development and uniform uptake of these technologies, which embrace their utility and ensure data trustworthiness. This constituted the first study to identify themes believed to be relevant by respiratory care and digital health experts in the Republic of Ireland to help inform future decision-making among respiratory patients that may potentially facilitate engagement with and appropriate use of digital health innovation (DHI). The study explored and identified expert participant perceptions, beliefs, barriers, and cues to action that would inform content and future deployment of living labs in respiratory care for remote patient monitoring of people with respiratory diseases using DHI. The objective of this case study was to generate and evaluate appropriate data sets to inform the selection and future deployment of an ICT-enabling technology that will empower patients to manage their respiratory systems in real-time in a safe effective manner through remote consultation with health service providers. The co-creation of effective DHI for respiratory care will be informed by multi-actor stakeholder participation, such as through a Quintuple Helix Hub framework combining university-industry-government-healthcare-society engagements. Studies, such as this, will help bridge the interface between top-down digital health policies and bottom-up end-user engagements to ensure safe and effective use of health technology. In addition, it will address the need to reach a consensus on appropriate key performance indicators (KPIs) for effective uptake, implementation, standardization, and regulation of DHI.


Assuntos
Envelhecimento , Atenção à Saúde , Humanos , Irlanda , Monitorização Fisiológica
3.
Biomedicines ; 11(8)2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37626713

RESUMO

Antimicrobial resistance (AMR) has become a topic of great concern in recent years, with much effort being committed to developing alternative treatments for resistant bacterial pathogens. Drug combinational therapies have been a major area of research for several years, with modern iterations using combining well-established antibiotics and other antimicrobials with the aim of discovering complementary mechanisms. Previously, we characterised four GRAS antimicrobials that can withstand thermal polymer extrusion processes for novel medical device-based and therapeutic applications. In the present study, four antimicrobial bioactive-silver nitrate, nisin, chitosan and zinc oxide-were assessed for their potential combined use as an alternative synergistic treatment for AMR bacteria via a broth microdilution assay based on a checkerboard format. The bioactives were tested in arrangements of two-, three- and four-drug combinations, and their interactions were determined and expressed in terms of a synergy score. Results have revealed interesting interactions based on treatments against recognised test bacterial strains that cause human and animal infections, namely E. coli, S. aureus and S. epidermidis. Silver nitrate was seen to greatly enhance the efficacy of its paired treatment. Combinations with nisin, which is a lantibiotic, exhibited the most interesting results, as nisin has no effect against Gram-negative bacteria when used alone; however, it demonstrated antimicrobial effects when combined with silver nitrate or chitosan. This study constitutes the first study to both report on practical three- and four-drug combinational assays and utilise these methods for the assessment of established and emerging antimicrobials. The novel methods and results presented in this study show the potential to explore previously unknown drug combination compatibility measures in an ease-of-use- and high-throughput-based format, which can greatly help future research that aims to identify appropriate alternative treatments for AMR, including the screening of potential new bioactives biorefined from various sources.

4.
Vaccines (Basel) ; 11(5)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37243096

RESUMO

Emerging, re-emerging and zoonotic viral pathogens represent a serious threat to human health, resulting in morbidity, mortality and potentially economic instability at a global scale. Certainly, the recent emergence of the novel SARS-CoV-2 virus (and its variants) highlighted the impact of such pathogens, with the pandemic creating unprecedented and continued demands for the accelerated production of antiviral therapeutics. With limited effective small molecule therapies available for metaphylaxis, vaccination programs have been the mainstay against virulent viral species. Traditional vaccines remain highly effective at providing high antibody titres, but are, however, slow to manufacture in times of emergency. The limitations of traditional vaccine modalities may be overcome by novel strategies, as outlined herein. To prevent future disease outbreaks, paradigm shift changes in manufacturing and distribution are necessary to advance the production of vaccines, monoclonal antibodies, cytokines and other antiviral therapies. Accelerated paths for antivirals have been made possible due to advances in bioprocessing, leading to the production of novel antiviral agents. This review outlines the role of bioprocessing in the production of biologics and advances in mitigating viral infectious disease. In an era of emerging viral diseases and the proliferation of antimicrobial resistance, this review provides insight into a significant method of antiviral agent production which is key to protecting public health.

5.
Environ Sci Pollut Res Int ; 30(27): 70771-70782, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37155092

RESUMO

The increase in pathogen levels in seawater threatens the safety of entire aquatic ecosystems. Foodborne pathogens can potentially accumulate in shellfish, especially in filter feeders such as bivalves, requiring an efficient depuration process before consumption. Alternative approaches to promote a cost-efficient purge at depuration plants are urgently needed. A small prototype pulsed ultraviolet (PUV) light recirculation system was designed, and its depuration potential was tested in a seawater matrix artificially contaminated with high levels of microbial pathogens Escherichia coli, Staphylococcus aureus, Salmonella typhimurium, Bacillus cereus and Candida albicans. The analysis of treatment parameters including voltage, number of pulses and duration of treatment was performed to ensure the highest reduction in contaminant levels. Optimal PUV disinfection was attained at 60 pulses/min at 1 kV for 10 min (a UV output of 12.9 J/cm2). All reductions were statistically significant, and the greatest was observed for S. aureus (5.63 log10), followed by C. albicans (5.15 log10), S. typhimurium (5 log10), B. cereus (4.59 log10) and E. coli (4.55 log10). PUV treatment disrupted the pathogen DNA with the result that S. aureus, C. albicans and S. typhimurium were not detectable by PCR. Regulations were reviewed to address the applicability of PUV treatment as a promising alternative to assist in the reduction of microbial pathogens at depuration plants due to its high efficiency, short treatment period, high UV dose and recirculation system as currently employed in shellfish depuration plants.


Assuntos
Desinfecção , Staphylococcus aureus , Escherichia coli , Ecossistema , Frutos do Mar , Água do Mar , Raios Ultravioleta
7.
Sci Total Environ ; 874: 162380, 2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-36841407

RESUMO

Safeguarding the seafood industry is important given its contribution to supporting our growing global population. However, shellfish are filter feeders that bioaccumulate microbial contaminants in their tissue from wastewater discharged into the same coastal growing environments leading to significant human disease outbreaks unless appropriately mitigated. Removal or inactivation of enteric viruses is very challenging particularly as human norovirus (hNoV) binds to specific histo-blood ligands in live oyster tissue that are consumed raw or lightly cooked. The regulatory framework that sets out use of clean seawater and UV disinfection is appropriate for bacterial decontamination at the post-harvest land-based depuration (cleaning) stage. However, additional non-thermal technologies are required to eliminate hNoV in live shellfish (particularly oysters) where published genomic studies report that low-pressure UV has limited effectiveness in inactivating hNoV. The use of the standard genomic detection method (ISO 15, 216-1:2017) is not appropriate for assessing the loss of infectious hNoV in treated live shellfish. The use of surrogate viral infectivity methods appear to offer some insight into the loss of hNoV infectiousness in live shellfish during decontamination. This paper reviews the use of existing and potentially other combinational treatment approaches to enhance the removal or inactivation of enteric viruses in live shellfish. The use of alternative and complementary novel diagnostic approaches to discern viable hNoV are discussed. The effectiveness and virological safety of new affordable hNoV intervention(s) require testing and validating at commercial shellfish production in conjunction with laboratory-based research. Appropriate risk management planning should encompass key stakeholders including local government and the wastewater industry. Gaining a mechanistic understanding of the relationship between hNoV response at molecular and structural levels in individually treated oysters as a unit will inform predictive modeling and appropriate treatment technologies. Global warming of coastal growing environments may introduce additional contaminant challenges (such as invasive species); thus, underscoring need to develop real-time ecosystem monitoring of growing environments to alert shellfish producers to appropriately mitigate these threats.


Assuntos
Norovirus , Ostreidae , Humanos , Animais , Norovirus/fisiologia , Águas Residuárias , Descontaminação , Ecossistema , Frutos do Mar/microbiologia
8.
Int J Mol Sci ; 24(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36675092

RESUMO

Fungal pathogens cause significant human morbidity and mortality globally, where there is a propensity to infect vulnerable people such as the immunocompromised ones. There is increasing evidence of resistance to antifungal drugs, which has significant implications for cutaneous, invasive and bloodstream infections. The World Health Organization (WHO) published a priority list of fungal pathogens in October 2022, thus, highlighting that a crisis point has been reached where there is a pressing need to address the solutions. This review provides a timely insight into the challenges and implications on the topic of antifungal drug resistance along with discussing the effectiveness of established disease mitigation modalities and approaches. There is also a need to elucidate the cellular and molecular mechanisms of fungal resistance to inform effective solutions. The established fungal decontamination approaches are effective for medical device processing and sterilization, but the presence of pathogenic fungi in recalcitrant biofilms can lead to challenges, particularly during cleaning. Future design ideas for implantable and reusable medical devices should consider antifungal materials and appropriates for disinfection, and where it is relevant, sterilization. Preventing the growth of mycotoxin-producing fungi on foods through the use of appropriate end-to-end processes is advisable, as mycotoxins are recalcitrant and challenging to eliminate once they have formed.


Assuntos
Antifúngicos , Micotoxinas , Humanos , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Fungos , Biofilmes , Micotoxinas/farmacologia , Farmacorresistência Fúngica
9.
J Appl Microbiol ; 134(1)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36626777

RESUMO

AIMS: This study aims to determine the inactivation kinetics of Geobacillus stearothermophilus and Bacillus atrophaeus biological indicators, treated with vaporized hydrogen peroxide (VH2O2) at an industrial scale. There is an assumption that sterilization processes generate linear kinetic plots of treated biological indicators that are used for informing probability-based decision-making by the MedTech industry for effective sterilization treatments; however, this has not been reported for sterilization using VH2O2. METHODS AND RESULTS: Survivor curves were generated, and sterilization performances were separately determined using G. stearothermophilus and B. atrophaeus biological indicators following the development of appropriate process challenge devices (PCDs). Regression analysis revealed that the inactivation kinetics for VH2O2-treated microorganisms exhibited log linear profiles. The use of scanning electron microscope (SEM) revealed no significant topographical changes in the outer surface of these VH2O2-treated spores. CONCLUSIONS: Both biological indicators exhibited log linear inactivation kinetics when treated with an industrial scale vaporized hydrogen peroxide (VH2O2) sterilization process. Therefore, this novel finding corroborates and proves the appropriateness of using VH2O2 as a sterilization method in accordance with applicable ISO standards.


Assuntos
Geobacillus stearothermophilus , Peróxido de Hidrogênio , Peróxido de Hidrogênio/farmacologia , Esporos Bacterianos , Esterilização/métodos
10.
Sci Total Environ ; 868: 161495, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-36634789

RESUMO

Irish freshwater aquaculture holds great potential for aiding food security. However, its necessary expansion has been hampered by the adoption of important environmental EU directives. A novel peatland-based recirculating aquaculture multi-trophic pond system (RAMPS) was developed to assess its potential to assist in the sustainable development of industry whilst remaining aligned with environmental protection by adhering to organic aquaculture practices. Microalgae play a pivotal role in the farms' wastewater bioremediation. However, a collapse of the algal population within the system towards the end of the pilot study was observed. No relationship between physicochemical fluctuations and the collapse were indicated. Further investigations into the potential presence of biological agents were then conducted and fourteen species of zoosporic parasites from five different genera (Labyrinthula, Vampyrella, Amoeboaphelidium, Paraphelidium and Aphelidium) were identified after conducting next-generation sequencing (MinION). The presence of these species indicated the potential cause of algal collapse. Additionally, changes in weather conditions may have also contributed to the issue. Given the lack of data available on zoosporic parasites and their potential impact on organic aquaculture practices, additional research needs to be conducted. Developing a means to monitor and mitigate against these complex zoosporic parasites will inform food security, it will particularly help safeguard "organic" freshwater aquaculture where there is a reliance on using natural-based approaches to address disease mitigation. This information will in turn inform the replication of this RAMPs system in peatlands internationally creating local employment in green technologies, as communities' transition away from burning peat as fossil fuel. Also, zoosporic parasites may reduce important microalgae in peatland-based culture ponds that serve as exceptional sequesters of carbon. Findings of this study will inform related research that focus on the emergence of microbial pathogens in local aquatic ecosystems brought on by variances in climate.


Assuntos
Microalgas , Parasitos , Animais , Ecossistema , Irlanda , Projetos Piloto , Água Doce , Eucariotos , Aquicultura
11.
Sci Total Environ ; 866: 161455, 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36621483

RESUMO

Severe acute respiratory syndrome Coronavirus-2 (SARS-CoV-2), and the resulting coronavirus disease (COVID-19), was declared a public health emergency of global concern by the World Health Organization (WHO) in the early months of 2020. There was a marked lack of knowledge to inform national pandemic response plans encompassing appropriate disease mitigation and preparation strategies to constrain and manage COVID-19. For example, the top 16 "most cited" papers published at the start of the pandemic on core knowledge gaps collectively constitute a staggering 29,393 citations. Albeit complex, appropriate decontamination modalities have been reported and developed for safe reuse of personal and protective equipment (PPE) under emergency use authorization (EUA) where critical supply chain shortages occur for healthcare workers (HCWs) caused by the COVID-19 pandemic. Commensurately, these similar methods may provide solutions for the safe decontamination of enormous volumes of PPE waste promoting opportunities in the circular bioeconomy that will also protect our environment, habitats and natural capital. The co-circulation of the highly transmissive mix of COVID-19 variants of concern (VoC) will continue to challenge our embattled healthcare systems globally for many years to come with an emphasis placed on maintaining effective disease mitigation strategies. This viewpoint article addresses the rationale and key developments in this important area since the onset of the COVID-19 pandemic and provides an insight into a variety of potential opportunities to unlock the long-term sustainability of single-use medical devices, including waste management.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/prevenção & controle , Pandemias/prevenção & controle , Descontaminação/métodos , Equipamento de Proteção Individual
12.
Sci Total Environ ; 863: 160846, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36526197

RESUMO

Packaging is essential to protect food, inform consumers, and avoid food waste, yet it can also contribute to the environmental footprint of products. Recycling waste treatment potentially provides more environmental benefits than other options (e.g., landfill), but only 66 % of packaging waste goes to recycling in the European Union. However, the prevention of packaging production with greater reuse, while extending the lifetime or improving packaging design should be firstly encouraged. This highlights the need to assess the willingness of consumers in reducing the environmental impact of seafood products from packaging. An online questionnaire was conducted in three countries (Portugal, Spain, and Ireland), composed of four sections: (i) seafood consumption, (ii) waste separation to be sent recycling, (iii) willingness to purchase seafood products with packaging designed to reduce environmental impact, and (iv) sociodemographic characteristics. Findings revealed that respondents from Spain and Portugal reported a slightly higher frequency of waste sent to recycle compared to Ireland. Irish respondents appear to have more difficulties about the type of plastic materials that can be sent to recycling due to Irish waste management capabilities; whereas Spanish and Portuguese respondents were not fully aware that packaging does not need to be washed prior to recycling. The most popular alternatives to improve the sustainability of seafood packaging were the use of reusable packaging, compostable packaging material, glass jars for canned seafood instead of cans, and intelligent packaging. Most respondents were willing to pay more for seafood products that use more sustainable packaging (62 % for Spain, 68 % for Ireland, 70 % for Portugal) and half of the respondents intimated that they avoid seafood products due to excessive packaging. With more detailed information on the waste management of packaging, seafood consumers could actively contribute with their attitudes where commensurate changes can improve environmental assessment of seafood.


Assuntos
Eliminação de Resíduos , Gerenciamento de Resíduos , Embalagem de Produtos , Conservação dos Recursos Naturais , Reciclagem , Plásticos , Alimentos Marinhos
13.
Sci Total Environ ; 851(Pt 2): 158392, 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36055498

RESUMO

Development of integrated multi-trophic aquaculture (IMTA) systems constitutes a step change in the sustainable production of freshwater fish to meet emerging needs for high-protein foods globally. Recently, there has been a paradigm shift away from harvesting peat as a fuel towards the development of wettable peatland innovation (termed 'paludiculture'), such as aquaculture. Such eco-innovations support carbon sequestration and align with a balanced environmental approach to protecting biodiversity. This novel peatland-based IMTA process in the Irish midlands relies upon natural microalgae for waste treatment, recirculation and water quality where there is no use of pesticides or antibiotics. This novel IMTA system is powered with a wind turbine and the process has 'organic status'; moreover, it does not discharge aquaculture effluent to receiving water. However, there is a significant lack of understanding as to diversity of microalgae in this 'paludiculture'-based IMTA processes. This constitutes the first case study to use conventional microscopy combined with next-generation sequencing and bioinformatics to profile microalgae occurring in this novel IMTA system from pooled samples over a 12 month period in 2020. Conventional microscopy combined with classic identification revealed twenty genera of algae; with Chlorophyta and Charophyta being the most common present. However, algal DNA isolation, 16 s sequencing and bioinformatics revealed a combined total of 982 species from 341 genera across nine phyla from the same IMTA system, which emphasized a significant underestimation in the number and diversity of beneficial or potentially harmful algae in the IMTA-microbiome. These new methods also yield rich data that can be used by digital technologies to transform future monitoring and performance of the IMTA system for sustainability. The findings of this study align with many sustainability development goals of the United Nations including no poverty, zero hunger, good health and well-being, responsible consumption and production, climate change, and life below water.


Assuntos
Microalgas , Praguicidas , Animais , Microalgas/genética , Eucariotos , Sequenciamento de Nucleotídeos em Larga Escala , Biologia Computacional , DNA de Algas , Irlanda , Aquicultura/métodos , Água Doce , Solo , Antibacterianos
14.
Sci Total Environ ; 851(Pt 2): 158284, 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36029815

RESUMO

Fungal pathogens contribute to significant disease burden globally; however, the fact that fungi are eukaryotes has greatly complicated their role in fungal-mediated infections and alleviation. Antifungal drugs are often toxic to host cells and there is increasing evidence of adaptive resistance in animals and humans. Existing fungal diagnostic and treatment regimens have limitations that has contributed to the alarming high mortality rates and prolonged morbidity seen in immunocompromised cohorts caused by opportunistic invasive infections as evidenced during HIV and COVID-19 pandemics. There is a need to develop real-time monitoring and diagnostic methods for fungal pathogens and to create a greater awareness as to the contribution of fungal pathogens in disease causation. Greater information is required on the appropriate selection and dose of antifungal drugs including factors governing resistance where there is commensurate need to discover more appropriate and effective solutions. Popular azole fungal drugs are widely detected in surface water and sediment due to incomplete removal in wastewater treatment plants where they are resistant to microbial degradation and may cause toxic effects on aquatic organisms such as algae and fish. UV has limited effectiveness in destruction of anti-fungal drugs where there is increased interest in the combination approaches such as novel use of pulsed-plasma gas-discharge technologies for environmental waste management. There is growing interest in developing alternative and complementary green eco-biocides and disinfection innovation. Fungi present challenges for cleaning, disinfection and sterilization of reusable medical devices such as endoscopes where they (example, Aspergillus and Candida species) can be protected when harboured in build-up biofilm from lethal processing. Information on the efficacy of established disinfection and sterilization technologies to address fungal pathogens including bottleneck areas that present high risk to patients is lacking. There is a need to address risk mitigation and modelling to inform efficacy of appropriate intervention technologies that must consider all contributing factors where there is potential to adopt digital technologies to enable real-time analysis of big data, such as use of artificial intelligence and machine learning. International consensus on standardised protocols for developing and reporting on appropriate alternative eco-solutions must be reached, particularly in order to address fungi with increasing drug resistance where research and innovation can be enabled using a One Health approach.


Assuntos
COVID-19 , Desinfetantes , Micoses , Animais , Humanos , Antifúngicos , Inteligência Artificial , COVID-19/prevenção & controle , Azóis , Desinfetantes/farmacologia , Água , Fungos
15.
Sci Total Environ ; 844: 157067, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-35780875

RESUMO

Shellfish are a rich source of minerals, B-vitamins and omega-3 to the human diet. The global population is expected to reach 9.6 billion people by 2050 where there will be increased demand for shellfish and for sustained improvements in harvesting. The production of most consumed species of shellfish is sea-based and are thus susceptible to in situ environmental conditions and water quality. Population growth has contributed to expansion of urbanization and the generation of effluent and waste that reaches aquatic environments, potentially contaminating seafood by exposure to non-treated effluents or inappropriately discarded waste. Environmental contaminants as microplastics (MP), pharmaceuticals (PHAR) and potentially toxic contaminants (PTE) are being identified in all trophic levels and are a current threat to both shellfish and consumer safety. Immunotoxicity, genotoxicity, fertility reduction, mortality and bioaccumulation of PTE are representative examples of the variety of effects already established in contaminated shellfish. In humans, the consumption of contaminated shellfish can lead to neurological and developmental effects, reproductive and gastrointestinal disorders and in extreme cases, death. This timely review provides insights into the presence of MP, PHAR and PTE in shellfish, and estimate the daily intake and hazard quotient for consumption behaviours. Alternatives approaches for seafood depuration that encompass risk reduction are addressed, to reflect state of the art knowledge from a Republic of Ireland perspective. Review of best-published literature revealed that MP, PHAR and PTE contaminants were detected in commercialised species of shellfish, such as Crassostrea and Mytilus. The ability to accumulate these contaminants by shellfish due to feeding characteristics is attested by extensive in vitro studies. However, there is lack of knowledge surrounding the distribution of these contaminants in the aquatic environment their interactions with humans. Preventive approaches including risk assessment are necessary to safeguard the shellfish industry and the consumer.


Assuntos
Plásticos , Poluentes Químicos da Água , Animais , Contaminação de Alimentos/análise , Humanos , Microplásticos , Preparações Farmacêuticas , Alimentos Marinhos/análise , Frutos do Mar/análise , Poluentes Químicos da Água/análise
16.
Sci Total Environ ; 838(Pt 3): 156328, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35649452

RESUMO

The world is heading in the wrong direction on carbon emissions where we are not on track to limit global warming to 1.5 °C; Ireland is among the countries where overall emissions have continued to rise. The development of wettable peatland products and services (termed 'Paludiculture') present significant opportunities for enabling a transition away from peat-harvesting (fossil fuels) to developing 'green' eco-innovations. However, this must be balanced with sustainable carbon sequestration and environmental protection. This complex transition from 'brown to green' must be met in real time by enabling digital technologies across the full value chain. This will potentially necessitate creation of new green-business models with the potential to support disruptive innovation. This timely paper describes digital transformation of paludiculture-based eco-innovation that will potentially lead to a paradigm shift towards using smart digital technologies to address efficiency of products and services along with future-proofing for climate change. Digital transform of paludiculture also aligns with the 'Industry 5.0 - a human-centric solution'. However, companies supporting peatland innovation may lack necessary standards, data-sharing or capabilities that can also affect viable business model propositions that can jeopardize economic, political and social sustainability. Digital solutions may reduce costs, increase productivity, improve produce develop, and achieve faster time to market for paludiculture. Digitisation also enables information systems to be open, interoperable, and user-friendly. This constitutes the first study to describe the digital transformation of paludiculture, both vertically and horizontally, in order to inform sustainability that includes process automation via AI, machine learning, IoT-Cloud informed sensors and robotics, virtual and augmented reality, and blockchain for cyber-physical systems. Thus, the aim of this paper is to describe the applicability of digital transformation to actualize the benefits and opportunities of paludiculture activities and enterprises in the Irish midlands with a global orientation.


Assuntos
Sequestro de Carbono , Conservação dos Recursos Naturais , Mudança Climática , Humanos , Indústrias , Solo
17.
J Fungi (Basel) ; 8(3)2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35330292

RESUMO

Mushrooms have been used as traditional medicine for millennia, fungi are the main natural source of psychedelic compounds. There is now increasing interest in using fungal active compounds such as psychedelics for alleviating symptoms of mental health disorders including major depressive disorder, anxiety, and addiction. The anxiolytic, antidepressant and anti-addictive effect of these compounds has raised awareness stimulating neuropharmacological investigations. Micro-dosing or acute dosing with psychedelics including Lysergic acid diethylamide (LSD) and psilocybin may offer patients treatment options which are unmet by current therapeutic options. Studies suggest that either dosing regimen produces a rapid and long-lasting effect on the patient post administration with a good safety profile. Psychedelics can also modulate immune systems including pro-inflammatory cytokines suggesting a potential in the treatment of auto-immune and other chronic pain conditions. This literature review aims to explore recent evidence relating to the application of fungal bioactives in treating chronic mental health and chronic pain morbidities.

18.
Bioengineered ; 13(7-12): 14903-14935, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37105672

RESUMO

Fungal biomass is the future's feedstock. Non-septate Ascomycetes and septate Basidiomycetes, famously known as mushrooms, are sources of fungal biomass. Fungal biomass, which on averagely comprises about 34% protein and 45% carbohydrate, can be cultivated in bioreactors to produce affordable, safe, nontoxic, and consistent biomass quality. Fungal-based technologies are seen as attractive, safer alternatives, either substituting or complementing the existing standard technology. Water and wastewater treatment, food and feed, green technology, innovative designs in buildings, enzyme technology, potential health benefits, and wealth production are the key sectors that successfully reported high-efficiency performances of fungal applications. This paper reviews the latest technical know-how, methods, and performance of fungal adaptation in those sectors. Excellent performance was reported indicating high potential for fungi utilization, particularly in the sectors, yet to be utilized and improved on the existing fungal-based applications. The expansion of fungal biomass in the industrial-scale application for the sustainability of earth and human well-being is in line with the United Nations' Sustainable Development Goals.


Subject-based thematic review of fungal biomass usage and developmentPractical application of fungal biomass aligns with 3 Sustainable Development GoalsHigh performance is reported in medical, water management, buildings, and biofuel fieldsFungal biomass is the lucrative, essential, and future's way forward.


Assuntos
Agaricales , Ascomicetos , Basidiomycota , Humanos , Reatores Biológicos , Carboidratos , Biomassa , Fungos/metabolismo
19.
Sci Total Environ ; 802: 149800, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34525752

RESUMO

Aquaculture is one of the fastest growing food producing industries globally, providing ~50% of fish for human consumption. However, the rapid growth of aquaculture presents a range of challenges including balancing environmental impact that can be influenced by variations in climatic conditions. Monitoring of physicochemical parameters is traditionally used to evaluate aquaculture output quality; however, this approach does not indicate the cumulative ecotoxicological effects on receiving waters. Specifically, this case study investigated the relationship between measuring traditional physicochemical parameters and the health of the alga Pseudokirchneriella subcapitata in order to evaluate the potential ecotoxicological effects of freshwater aquaculture on the receiving aquatic ecosystem in the Irish midlands. This constituted the first 2-year longitudinal study conducted in 2018 and 2019 that reports on the efficacy of using algae as a natural bioindicator to monitor and assess freshwater aquaculture wastewater from a traditional flow-through fish farm producing Eurasian Perch (Perca fluviatilis); monitoring was compared over a same six-month period in the same location each year. Findings demonstrated significant differences between the two monitoring periods when using P. subcapitata for assessing the quality of aquaculture intake (P = 0.030) and output (P = 0.039). No stimulatory effects were observed during 2019 unlike >50% rates experienced the previous year. These observations coincided with changes in climatic conditions whereby the 2018 period experienced extended levels of drought; whereas non-drought conditions were observed during 2019. Findings suggest that reliance upon traditional monitoring techniques may not provide sufficient robustness or versatility to address emerging issues, such as extremes in climate variance, which may influence the future intensive sustainability of freshwater aquaculture. This research supports the complementary use of P. subcapitata as a rapid and simple early-warning bioindicator for measuring aquaculture output quality on receiving aquatic ecosystems.


Assuntos
Microalgas , Percas , Animais , Aquicultura , Ecossistema , Biomarcadores Ambientais , Humanos , Irlanda , Estudos Longitudinais , Águas Residuárias
20.
Sci Total Environ ; 809: 152177, 2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-34875322

RESUMO

Acute respiratory distress syndrome (ARDS) is the most common form of acute severe hypoxemic respiratory failure in the critically ill with a hospital mortality of 40%. Alveolar inflammation is one of the hallmarks for this disease. ß-Glucans are polysaccharides isolated from a variety of natural sources including mushrooms, with documented immune modulating properties. To investigate the immunomodulatory activity of ß-glucans and their potential as a treatment for ARDS, we isolated and measured glucan-rich polysaccharides from seven species of mushrooms. We used three models of in-vitro injury in THP-1 macrophages, Peripheral blood mononuclear cells (CD14+) (PMBCs) isolated from healthy volunteers and lung epithelial cell lines. We observed variance between ß-glucan content in extracts isolated from seven mushroom species. The extracts with the highest ß-glucan content found was Lentinus edodes which contained 70% w/w and Hypsizygus tessellatus which contained 80% w/w with low levels of α-glucan. The extracts had the ability to induce secretion of up to 4000 pg/mL of the inflammatory cytokine IL-6, and up to 5000 pg/mL and 500 pg/mL of the anti-inflammatory cytokines IL-22 and IL-10, respectively, at a concentration of 1 mg/mL in THP-1 macrophages. In the presence of cytokine injury, IL-8 was reduced from 15,000 pg/mL to as low as 10,000 pg/mL in THP-1 macrophages. After insult with LPS, phagocytosis dropped from 70-90% to as low 10% in CD14+ PBMCs. After LPS insult CCL8 relative gene expression was reduced, and IL-10 relative gene expression increased from 50 to 250-fold in THP-1 macrophages. In lung epithelial cells, both A549 and BEAS-2B after IL-1ß insult, IL-8 levels dropped from 10,000 pg/mL to as low as 6000 pg/mL. TNF-α levels dropped 10-fold from 100 pg/mL to just below 10 pg/mL. These results demonstrate the therapeutic potential of ß-glucans in inflammatory lung conditions. Findings also advance bio-based research that connects green innovation with One Health applications for the betterment of society.


Assuntos
Agaricales , beta-Glucanas , Glucanos , Humanos , Leucócitos Mononucleares , Pulmão , Polissacarídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...