Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 93(11): 113514, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36461518

RESUMO

COMPASS Upgrade is a medium size and high field tokamak that is capable of addressing key challenges for reactor grade tokamaks, including power exhaust and advanced confinement scenarios. Electron cyclotron emission will be available among the first diagnostics to provide measurements of high spatial and temporal resolution of electron temperature profiles and electron temperature fluctuation profiles through a radial view. A separate oblique view at 12° from normal will be utilized to study non-thermal electrons. Both the radial and oblique views are envisioned to be located in a wide-angle midplane port, which has dimensions that enable simultaneous hosting of the front-end of their quasi-optical (QO) designs. Each QO design will have an in situ hot calibration source in the front-end to provide standalone and calibrated Te (R,t) measurements. The conceptual design for each QO system, the Gaussian beam analysis, and the details of the diagnostic channels are presented.

2.
Rev Sci Instrum ; 92(3): 033510, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33820026

RESUMO

Utilizing variable-frequency channels, e.g., yttrium iron garnet (YIG) bandpass filters, in the intermediate frequency (IF) section of an electron cyclotron emission (ECE) radiometer facilitates flexibility in the volume viewed by the ECE channels as well as high resolution electron temperature and temperature fluctuation measurements in tokamaks. Fast modulating electron cyclotron emission (FMECE), a stand-alone IF section with eight channels, is a novel application of YIG filters for real-time electron temperature gradient and gradient scale length measurements. Key to FMECE is a simultaneous input/output data acquisition unit, as well as a modified type of YIG filters, which is capable of fast switching of their center (set) frequencies with a frequency slew rate of 600 µs/GHz. A new FMECE has been implemented and tested on the DIII-D tokamak, demonstrating its capability in real-time gradient measurements. The data presented here shows that FMECE can identify flattening in the electron temperature profile; the latter can be used as a sensor for real time monitoring and control of plasma instabilities. Implementation and application are planned for the EAST tokamak.

3.
Rev Sci Instrum ; 79(10): 10F315, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19044628

RESUMO

Charge exchange recombination spectroscopy on Alcator C-Mod relies on the use of the diagnostic neutral beam injector as a source of neutral particles which penetrate deep into the plasma. It employs the emission resulting from the interaction of the beam atoms with fully ionized impurity ions. To interpret the emission from a given point in the plasma as the density of emitting impurity ions, the density of beam atoms must be known. Here, an analysis of beam propagation is described which yields the beam density profile throughout the beam trajectory from the neutral beam injector to the core of the plasma. The analysis includes the effects of beam formation, attenuation in the neutral gas surrounding the plasma, and attenuation in the plasma. In the course of this work, a numerical simulation and an analytical approximation for beam divergence are developed. The description is made sufficiently compact to yield accurate results in a time consistent with between-shot analysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...