Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Comput Neurosci ; 8: 111, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25339894

RESUMO

The simulation of ion-channel noise has an important role in computational neuroscience. In recent years several approximate methods of carrying out this simulation have been published, based on stochastic differential equations, and all giving slightly different results. The obvious, and essential, question is: which method is the most accurate and which is most computationally efficient? Here we make a contribution to the answer. We compare interspike interval histograms from simulated data using four different approximate stochastic differential equation (SDE) models of the stochastic Hodgkin-Huxley neuron, as well as the exact Markov chain model simulated by the Gillespie algorithm. One of the recent SDE models is the same as the Kurtz approximation first published in 1978. All the models considered give similar ISI histograms over a wide range of deterministic and stochastic input. Three features of these histograms are an initial peak, followed by one or more bumps, and then an exponential tail. We explore how these features depend on deterministic input and on level of channel noise, and explain the results using the stochastic dynamics of the model. We conclude with a rough ranking of the four SDE models with respect to the similarity of their ISI histograms to the histogram of the exact Markov chain model.

2.
Neural Comput ; 23(12): 3094-124, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21919786

RESUMO

Using the Morris-Lecar model neuron with a type II parameter set and K(+)-channel noise, we investigate the interspike interval distribution as increasing levels of applied current drive the model through a subcritical Hopf bifurcation. Our goal is to provide a quantitative description of the distributions associated with spiking as a function of applied current. The model generates bursty spiking behavior with sequences of random numbers of spikes (bursts) separated by interburst intervals of random length. This kind of spiking behavior is found in many places in the nervous system, most notably, perhaps, in stuttering inhibitory interneurons in cortex. Here we show several practical and inviting aspects of this model, combining analysis of the stochastic dynamics of the model with estimation based on simulations. We show that the parameter of the exponential tail of the interspike interval distribution is in fact continuous over the entire range of plausible applied current, regardless of the bifurcations in the phase portrait of the model. Further, we show that the spike sequence length, apparently studied for the first time here, has a geometric distribution whose associated parameter is continuous as a function of applied current over the entire input range. Hence, this model is applicable over a much wider range of applied current than has been thought.


Assuntos
Potenciais de Ação/fisiologia , Sistema Nervoso Central/fisiologia , Modelos Neurológicos , Neurônios/fisiologia , Animais , Humanos , Processos Estocásticos
3.
J Comput Neurosci ; 16(2): 87-112, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-14758060

RESUMO

We explore the effects of stochastic sodium (Na) channel activation on the variability and dynamics of spiking and bursting in a model neuron. The complete model segregates Hodgin-Huxley-type currents into two compartments, and undergoes applied current-dependent bifurcations between regimes of periodic bursting, chaotic bursting, and tonic spiking. Noise is added to simulate variable, finite sizes of the population of Na channels in the fast spiking compartment. During tonic firing, Na channel noise causes variability in interspike intervals (ISIs). The variance, as well as the sensitivity to noise, depend on the model's biophysical complexity. They are smallest in an isolated spiking compartment; increase significantly upon coupling to a passive compartment; and increase again when the second compartment also includes slow-acting currents. In this full model, sufficient noise can convert tonic firing into bursting. During bursting, the actions of Na channel noise are state-dependent. The higher the noise level, the greater the jitter in spike timing within bursts. The noise makes the burst durations of periodic regimes variable, while decreasing burst length duration and variance in a chaotic regime. Na channel noise blurs the sharp transitions of spike time and burst length seen at the bifurcations of the noise-free model. Close to such a bifurcation, the burst behaviors of previously periodic and chaotic regimes become essentially indistinguishable. We discuss biophysical mechanisms, dynamical interpretations and physiological implications. We suggest that noise associated with finite populations of Na channels could evoke very different effects on the intrinsic variability of spiking and bursting discharges, depending on a biological neuron's complexity and applied current-dependent state. We find that simulated channel noise in the model neuron qualitatively replicates the observed variability in burst length and interburst interval in an isolated biological bursting neuron.


Assuntos
Modelos Neurológicos , Neurônios/fisiologia , Ruído , Periodicidade , Canais de Sódio/fisiologia , Potenciais de Ação/fisiologia , Animais , Eletrofisiologia , Dinâmica não Linear , Processos Estocásticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...