Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 112(51): 13402-12, 2008 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-19061326

RESUMO

This paper describes a multivariate analysis of the fluorescence emission of 6-propionyl-2-dimethylaminonaphthalene (PRODAN) in a series of isotropic solvents of differing polarity and hydrogen-bonding ability. Multivariate methods distill the essential features from spectral data matrices so that the structural details that are embedded within the data are revealed to the analyst. In the aprotic solvents investigated, the analysis reveals a pair of emission components that have emission maxima that scale with the orientational polarizability. In the alcohols, short-lived, polarity-independent blue bands tentatively attributed to neutral hydrogen-bonded solute-solvent complexes form and relax prior to emission from paired bands that have Stokes shifts that scale with the solvent hydrogen-bonding ability rather than the polarity. In water, the short-lived blue bands were not observed, but the shift in the paired bands did scale with the solvent hydrogen-bonding ability.

2.
J Phys Chem B ; 110(30): 15021-8, 2006 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-16869617

RESUMO

This paper describes a multivariate photokinetic analysis of the membrane phase dependence of PRODAN and LAURDAN photokinetics in DMPC vesicles. Decay data, arranged in the form of Fourier transformed emission-decay matrices (FT-EDMs), were collected as a function of temperature around the gel phase transition temperature. Each matrix was partitioned into the emission spectra and decay profiles of the underlying emission components using methods based on principal components analysis. The analysis revealed that both probes typically emit at least three spectral components, which vary in intensity as the membrane undergoes gel to liquid-crystalline phase transitions: a locally excited species (lambda max approximately 415 nm), a charge-transfer species (lambda max approximately 435 nm), and a solvent relaxed species (lambda max approximately 490 nm). In contrast to previous reports, the most red-shifted species is not photoexcited, but evolves from the locally excited species and does not exhibit the dynamic Stokes' shifts associated with conventional solvent relaxation. The primary difference in the emission of the two probes is the prominence of the charge-transfer species in the LAURDAN emission.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...