Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 13(8)2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37627230

RESUMO

Adsorbing toxins from the blood to augment membrane-based hemodialysis is an active area of research. Films composed of ß-cyclodextrin-co-(methacryloyloxy)ethyl phosphorylcholine (p(PMßCD-co-MPC)) with various monomer ratios were formed on magnetic nanoparticles and characterized. Surface chemistry effects on protein denaturation were evaluated and indicated that unmodified magnetic nanoparticles greatly perturbed the structure of proteins compared to coated particles. Plasma clotting assays were conducted to investigate the stability of plasma in the presence of particles, where a 2:2 monomer ratio yielded the best results for a given total surface area of particles. Total protein adsorption results revealed that modified surfaces exhibited reduced protein adsorption compared to bare particles, and pure MPC showed the lowest adsorption. Immunoblot results showed that fibrinogen, α1-antitrypsin, vitronectin, prekallikrein, antithrombin, albumin, and C3 correlated with film composition. Hemocompatibility testing with whole blood illustrated that the 1:3 ratio of CD to MPC had a negative impact on platelets, as evidenced by the increased activation, reduced response to an agonist, and reduced platelet count. Other formulations had statistically significant effects on platelet activation, but no formulation yielded apparent adverse effects on hemostasis. For the first time, p(PMßCD-co-MPC)-coated MNP were synthesized and their general hemocompatibility assessed.


Assuntos
Nanopartículas de Magnetita , Fosforilcolina , Adsorção , Antitrombina III , Coagulação Sanguínea
2.
Micromachines (Basel) ; 12(4)2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33921018

RESUMO

In recent years, the need for sophisticated human in vitro models for integrative biology has motivated the development of organ-on-a-chip platforms. Organ-on-a-chip devices are engineered to mimic the mechanical, biochemical and physiological properties of human organs; however, there are many important considerations when selecting or designing an appropriate device for investigating a specific scientific question. Building microfluidic Brain-on-a-Chip (BoC) models from the ground-up will allow for research questions to be answered more thoroughly in the brain research field, but the design of these devices requires several choices to be made throughout the design development phase. These considerations include the cell types, extracellular matrix (ECM) material(s), and perfusion/flow considerations. Choices made early in the design cycle will dictate the limitations of the device and influence the end-point results such as the permeability of the endothelial cell monolayer, and the expression of cell type-specific markers. To better understand why the engineering aspects of a microfluidic BoC need to be influenced by the desired biological environment, recent progress in microfluidic BoC technology is compared. This review focuses on perfusable blood-brain barrier (BBB) and neurovascular unit (NVU) models with discussions about the chip architecture, the ECM used, and how they relate to the in vivo human brain. With increased knowledge on how to make informed choices when selecting or designing BoC models, the scientific community will benefit from shorter development phases and platforms curated for their application.

3.
Alzheimers Res Ther ; 13(1): 58, 2021 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-33678186

RESUMO

BACKGROUND: Glial fibrillary acidic protein (GFAP) has emerged as a promising fluid biomarker for several neurological indications including traumatic brain injury (TBI), a leading cause of death and disability worldwide. In humans, serum or plasma GFAP levels can predict brain abnormalities including hemorrhage on computed tomography (CT) scans and magnetic resonance imaging (MRI). However, assays to quantify plasma or serum GFAP in preclinical models are not yet available. METHODS: We developed and validated a novel sensitive GFAP immunoassay assay for mouse plasma on the Meso Scale Discovery immunoassay platform and validated assay performance for robustness, precision, limits of quantification, dilutional linearity, parallelism, recovery, stability, selectivity, and pre-analytical factors. To provide proof-of-concept data for this assay as a translational research tool for TBI and Alzheimer's disease (AD), plasma GFAP was measured in mice exposed to TBI using the Closed Head Impact Model of Engineered Rotational Acceleration (CHIMERA) model and in APP/PS1 mice with normal or reduced levels of plasma high-density lipoprotein (HDL). RESULTS: We performed a partial validation of our novel assay and found its performance by the parameters studied was similar to assays used to quantify human GFAP in clinical neurotrauma blood specimens and to assays used to measure murine GFAP in tissues. Specifically, we demonstrated an intra-assay CV of 5.0%, an inter-assay CV of 7.2%, a lower limit of detection (LLOD) of 9.0 pg/mL, a lower limit of quantification (LLOQ) of 24.8 pg/mL, an upper limit of quantification (ULOQ) of at least 16,533.9 pg/mL, dilution linearity of calibrators from 20 to 200,000 pg/mL with 90-123% recovery, dilution linearity of plasma specimens up to 32-fold with 96-112% recovery, spike recovery of 67-100%, and excellent analyte stability in specimens exposed to up to 7 freeze-thaw cycles, 168 h at 4 °C, 24 h at room temperature (RT), or 30 days at - 20 °C. We also observed elevated plasma GFAP in mice 6 h after TBI and in aged APP/PS1 mice with plasma HDL deficiency. This assay also detects GFAP in serum. CONCLUSIONS: This novel assay is a valuable translational tool that may help to provide insights into the mechanistic pathophysiology of TBI and AD.


Assuntos
Lesões Encefálicas Traumáticas , Animais , Biomarcadores , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Proteína Glial Fibrilar Ácida , Imunoensaio , Camundongos , Tomografia Computadorizada por Raios X
4.
Mol Neurodegener ; 15(1): 70, 2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-33213497

RESUMO

INTRODUCTION: The neurovascular unit (NVU) - the interaction between the neurons and the cerebrovasculature - is increasingly important to interrogate through human-based experimental models. Although advanced models of cerebral capillaries have been developed in the last decade, there is currently no in vitro 3-dimensional (3D) perfusible model of the human cortical arterial NVU. METHOD: We used a tissue-engineering technique to develop a scaffold-directed, perfusible, 3D human NVU that is cultured in native-like flow conditions that mimics the anatomy and physiology of cortical penetrating arteries. RESULTS: This system, composed of primary human vascular cells (endothelial cells, smooth muscle cells and astrocytes) and induced pluripotent stem cell (iPSC) derived neurons, demonstrates a physiological multilayer organization of the involved cell types. It reproduces key characteristics of cortical neurons and astrocytes and enables formation of a selective and functional endothelial barrier. We provide proof-of-principle data showing that this in vitro human arterial NVU may be suitable to study neurovascular components of neurodegenerative diseases such as Alzheimer's disease (AD), as endogenously produced phosphorylated tau and beta-amyloid accumulate in the model over time. Finally, neuronal and glial fluid biomarkers relevant to neurodegenerative diseases are measurable in our arterial NVU model. CONCLUSION: This model is a suitable research tool to investigate arterial NVU functions in healthy and disease states. Further, the design of the platform allows culture under native-like flow conditions for extended periods of time and yields sufficient tissue and media for downstream immunohistochemistry and biochemistry analyses.


Assuntos
Artérias/metabolismo , Astrócitos/metabolismo , Células Endoteliais/metabolismo , Doenças Neurodegenerativas/metabolismo , Doença de Alzheimer/metabolismo , Artérias/fisiopatologia , Barreira Hematoencefálica/metabolismo , Técnicas de Cocultura , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Doenças Neurodegenerativas/patologia , Neurônios/metabolismo
5.
Mol Neurobiol ; 57(3): 1418-1431, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31754998

RESUMO

Parkinson's disease is a neurodegenerative disease characterized by a loss of dopaminergic substantia nigra neurons and depletion of dopamine. To date, current therapeutic approaches focus on managing motor symptoms and trying to slow neurodegeneration, with minimal capacity to promote neurorecovery. mGluR5 plays a key role in neuroplasticity, and altered mGluR5 signaling contributes to synucleinopathy and dyskinesia in patients with Parkinson's disease. Here, we tested whether the mGluR5-negative allosteric modulator, (2-chloro-4-[2[2,5-dimethyl-1-[4-(trifluoromethoxy) phenyl] imidazol-4-yl] ethynyl] pyridine (CTEP), would be effective in improving motor deficits and promoting neural recovery in a 6-hydroxydopamine (6-OHDA) mouse model. Lesions were induced by 6-ODHA striatal infusion, and 30 days later treatment with CTEP (2 mg/kg) or vehicle commenced for either 1 or 12 weeks. Animals were subjected to behavioral, pathological, and molecular analyses. We also assessed how long the effects of CTEP persisted, and finally, using rapamycin, determined the role of the mTOR pathway. CTEP treatment induced a duration-dependent improvement in apomorphine-induced rotation and performance on rotarod in lesioned mice. Moreover, CTEP promoted a recovery of striatal tyrosine hydroxylase-positive fibers and normalized FosB levels in lesioned mice. The beneficial effects of CTEP were paralleled by an activation of mammalian target of rapamycin (mTOR) pathway and elevated brain-derived neurotrophic factor levels in the striatum of lesioned mice. The mTOR inhibitor, rapamycin (sirolimus), abolished CTEP-induced neurorecovery and rescue of motor deficits. Our findings indicate that mTOR pathway is a useful target to promote recovery and that mGluR5 allosteric regulators may potentially be repurposed to selectively target this pathway to enhance neuroplasticity in patients with Parkinson's disease.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Doença de Parkinson/metabolismo , Doença de Parkinson/fisiopatologia , Receptor de Glutamato Metabotrópico 5/metabolismo , Animais , Apomorfina/farmacologia , Modelos Animais de Doenças , Masculino , Camundongos , Doenças Neurodegenerativas/metabolismo , Oxidopamina/farmacologia
6.
Brain Res ; 1707: 164-171, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30465751

RESUMO

Lysine methylation is well-documented and relatively well-understood with respect to histone modification and the epigenetic regulation of gene expression. Enzymes called lysine methyltransferases (KMTs) are capable of methylating lysine residues on histone tails, while the opposing lysine demethylases (KDMs) are capable of removing the methyl groups. This balance of dynamic methylation of histone proteins effectively alters gene expression, and has been widely studied with many applications in neurological disease. While histone methylation is an extensive field of research, lysine methylation has received considerable attention in recent years, following the discovery of a handful of non-histone substrates for KMTs. With the expanding repertoire of non-histone substrates, exploration into the cellular functions regulated by this dynamic post-translational modification has become an intriguing research question. Recent studies have implicated non-histone methylation in many crucial cell processes, such as signal transduction, apoptosis, and proliferation. Although most of the current research in this emerging field is streamlined for applications in cancer, it seems that lysine methylation of non-histone proteins could also be relevant in neurodegenerative disease. This review will summarize what is known about the role of histone lysine methylation in neurodegenerative diseases, and explore the links between recently identified non-histone methylated proteins, and the brain. Our goal is to connect the emerging field of non-histone protein methylation with neurodegenerative research.


Assuntos
Histona-Lisina N-Metiltransferase/metabolismo , Lisina/metabolismo , Doenças Neurodegenerativas/metabolismo , Animais , Epigênese Genética/fisiologia , Histonas/metabolismo , Humanos , Metilação , Processamento de Proteína Pós-Traducional/fisiologia , Transdução de Sinais/fisiologia
7.
MethodsX ; 5: 118-124, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29487803

RESUMO

While a number of post-translational modifications (PTM), such as phosphorylation and ubiquitination, have been extensively studied, lysine methylation is emerging as an important PTM with implications in a growing number of diverse cellular processes. To date, there are approximately 5000 identified methylation sites on non-histone proteins, and as the methyllysine proteome expands it becomes important to identify the lysine methyltransferase enzymes responsible for each methylation event. The use of peptide SPOT methylation assay has proven to be a useful in the identification and validation of novel substrates for lysine methyltransferase enzymes as it uses a weak beta emitter coupled with fluorography to detect methylation events. The method described in this paper provides improvements to the typical protocol for this assay, as a highly sensitive tritium assay can be developed with less radioactivity than previously described. This protocol provides an inexpensive alternative to weak beta signal enhancer sprays and washes for use in lysine methylation peptide SPOT arrays, and a simple open-source method for array quantification.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...