Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Int J Cardiol Heart Vasc ; 51: 101364, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38426114

RESUMO

This systematic review and meta-analysis was conducted to determine the clinical relevance of echocardiographically measured left atrial (LA) size to predict the recurrence of atrial fibrillation (AF) after direct current cardioversion (DCCV). A search was performed on Medline (Ovid), Embase (Elsevier), Cochrane Central Register of Controlled Trials (CENTRAL) in Cochrane Library, Wiley and Web of Science (Clarivate) to identify relevant studies. Amongst the initial 4066 citations identified, 31 fulfilled the criteria for inclusion in the data analysis incorporating 2725 patients with a mean follow-up period of 6.5 months. The weighted mean left atrial volume index (LAVI) was 40.56 ml/m2 (95 %CI:37.24-43.88) in the sinus rhythm (SR) maintenance group versus 48.69 ml/m2 (95 % CI: 44.42-52.97) in the AF recurrence group with P value of < 0.001, left atrial diameter (LAD) was 42.06 mm (95 %CI: 41.08-43.05) in the SR maintenance group versus 45.13 mm (95 %CI: 44.09-46.16) in the AF recurrence group, P value < 0.001. Effect size analysis of LAVI showed that each unit increase in LAVI resulted in an increase in the risk of AF recurrence by 6 % (95 % CI: 3 %-10 %). Age and AF duration were also statistically significant between the two groups however comorbidities, use of beta blockers or amiodarone were not significantly different. This meta-analysis shows that AF duration, LAVI, LAD and age predict the risk of recurrence of atrial fibrillation post electrical cardioversion with LAVI being the most clinically relevant echocardiographic feature.

2.
Cell Rep ; 42(4): 112338, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37027295

RESUMO

During intravasation, cancer cells cross the endothelial barrier and enter the circulation. Extracellular matrix stiffening has been correlated with tumor metastatic potential; however, little is known about the effects of matrix stiffness on intravasation. Here, we utilize in vitro systems, a mouse model, specimens from patients with breast cancer, and RNA expression profiles from The Cancer Genome Atlas Program (TCGA) to investigate the molecular mechanism by which matrix stiffening promotes tumor cell intravasation. Our data show that heightened matrix stiffness increases MENA expression, which promotes contractility and intravasation through focal adhesion kinase activity. Further, matrix stiffening decreases epithelial splicing regulatory protein 1 (ESRP1) expression, which triggers alternative splicing of MENA, decreases the expression of MENA11a, and enhances contractility and intravasation. Altogether, our data indicate that matrix stiffness regulates tumor cell intravasation through enhanced expression and ESRP1-mediated alternative splicing of MENA, providing a mechanism by which matrix stiffness regulates tumor cell intravasation.


Assuntos
Processamento Alternativo , Neoplasias da Mama , Animais , Feminino , Humanos , Camundongos , Processamento Alternativo/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proteínas de Ligação a RNA/metabolismo
3.
Sci Transl Med ; 15(693): eadf1147, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37099632

RESUMO

Beta-adrenergic blockade has been associated with improved cancer survival in patients with triple-negative breast cancer (TNBC), but the mechanisms of these effects remain unclear. In clinical epidemiological analyses, we identified a relationship between beta-blocker use and anthracycline chemotherapy in protecting against TNBC progression, disease recurrence, and mortality. We recapitulated the effect of beta-blockade on anthracycline efficacy in xenograft mouse models of TNBC. In metastatic 4T1.2 and MDA-MB-231 mouse models of TNBC, beta-blockade improved the efficacy of the anthracycline doxorubicin by reducing metastatic development. We found that anthracycline chemotherapy alone, in the absence of beta-blockade, increased sympathetic nerve fiber activity and norepinephrine concentration in mammary tumors through the induction of nerve growth factor (NGF) by tumor cells. Moreover, using preclinical models and clinical samples, we found that anthracycline chemotherapy up-regulated ß2-adrenoceptor expression and amplified receptor signaling in tumor cells. Neurotoxin inhibition of sympathetic neural signaling in mammary tumors using 6-hydroxydopamine or genetic deletion of NGF or ß2-adrenoceptor in tumor cells enhanced the therapeutic effect of anthracycline chemotherapy by reducing metastasis in xenograft mouse models. These findings reveal a neuromodulatory effect of anthracycline chemotherapy that undermines its potential therapeutic impact, which can be overcome by inhibiting ß2-adrenergic signaling in the tumor microenvironment. Supplementing anthracycline chemotherapy with adjunctive ß2-adrenergic antagonists represents a potential therapeutic strategy for enhancing the clinical management of TNBC.


Assuntos
Antraciclinas , Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Antraciclinas/farmacologia , Antraciclinas/uso terapêutico , Neoplasias de Mama Triplo Negativas/genética , Fator de Crescimento Neural/uso terapêutico , Linhagem Celular Tumoral , Recidiva Local de Neoplasia/tratamento farmacológico , Receptores Adrenérgicos/uso terapêutico , Microambiente Tumoral
4.
Endocrinol Diabetes Metab ; 6(3): e399, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37002645

RESUMO

INTRODUCTION: Currently, the water deprivation test remains the standard method for distinguishing primary polydipsia (PP) from cranial diabetes insipidus (cDI) and nephrogenic diabetes insipidus (nDI). There is increasing interest in a direct estimate of antidiuretic hormone using plasma copeptin as a stable and reliable surrogate marker. We present our experience of measuring copeptin during the water deprivation test. METHODS: Forty-seven people (17 men) underwent a standard water deprivation test between 2013 and 2021. Plasma copeptin was measured at the start of the test and at the end of the period of water deprivation (maximum osmotic stimulation). Results were classified using prespecified diagnostic criteria. As it is known that a significant proportion of tests will reveal indeterminate results, a final diagnosis was obtained by including relevant pre- and post-test clinical criteria. This diagnosis was then used to plan individual treatment. RESULTS: Basal and stimulated copeptin were significantly higher in the nephrogenic DI group than other categories (p < .001). There was no significant difference in basal or stimulated copeptin between PP, cDI or partial DI. Nine results were indeterminate where the serum and urine osmolality did not give a unified diagnosis. Stimulated copeptin was helpful in reclassifying these patients into the final diagnostic groups. CONCLUSION: Plasma copeptin has additional clinical utility in interpretation of the water deprivation test and may continue to have a place alongside newer stimulation tests.


Assuntos
Poliúria , Privação de Água , Masculino , Humanos , Privação de Água/fisiologia , Poliúria/diagnóstico , Diagnóstico Diferencial , Glicopeptídeos
5.
Mol Pharmacol ; 103(6): 325-338, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36921922

RESUMO

Allosteric modulation of metabotropic glutamate receptor subtype 1 (mGlu1) represents a viable therapeutic target for treating numerous central nervous system disorders. Although multiple chemically distinct mGlu1 positive (PAMs) and negative (NAMs) allosteric modulators have been identified, drug discovery paradigms have not included rigorous pharmacological analysis. In the present study, we hypothesized that existing mGlu1 allosteric modulators possess unappreciated probe-dependent or biased pharmacology. Using human embryonic kidney 293 (HEK293A) cells stably expressing human mGlu1, we screened mGlu1 PAMs and NAMs from divergent chemical scaffolds for modulation of different mGlu1 orthosteric agonists in intracellular calcium (iCa2+) mobilization and inositol monophosphate (IP1) accumulation assays. Operational models of agonism and allosterism were used to derive estimates for important pharmacological parameters such as affinity, efficacy, and cooperativity. Modulation of glutamate and quisqualate-mediated iCa2+ mobilization revealed probe dependence at the level of affinity and cooperativity for both mGlu1 PAMs and NAMs. We also identified the previously described mGlu5 selective NAM PF-06462894 as an mGlu1 NAM with a different pharmacological profile from other NAMs. Differential profiles were also observed when comparing ligand pharmacology between iCa2+ mobilization and IP1 accumulation. The PAMs Ro67-4853 and CPPHA displayed apparent negative cooperativity for modulation of quisqualate affinity, and the NAMs CPCCOEt and PF-06462894 had a marked reduction in cooperativity with quisqualate in IP1 accumulation and upon extended incubation in iCa2+ mobilization assays. These data highlight the importance of rigorous assessment of mGlu1 modulator pharmacology to inform future drug discovery programs for mGlu1 allosteric modulators. SIGNIFICANCE STATEMENT: Metabotropic glutamate receptor subtype 1 (mGlu1) positive and negative allosteric modulators have therapeutic potential in multiple central nervous system disorders. We show that chemically distinct modulators display differential pharmacology with different orthosteric ligands and across divergent signaling pathways at human mGlu1. Such complexities in allosteric ligand pharmacology should be considered in future mGlu1 allosteric drug discovery programs.


Assuntos
Ácido Glutâmico , Receptor de Glutamato Metabotrópico 5 , Humanos , Receptor de Glutamato Metabotrópico 5/metabolismo , Ligantes , Regulação Alostérica , Ácido Quisquálico , Ácido Glutâmico/metabolismo
6.
Heart Lung Circ ; 32(2): 184-196, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36599791

RESUMO

IMPORTANCE: Randomised trials have shown that catheter ablation (CA) is superior to medical therapy for ventricular tachycardia (VT) largely in patients with ischaemic heart disease. Whether this translates to patients with all forms and stages of structural heart disease (SHD-e.g., non-ischaemic heart disease) is unclear. This trial will help clarify whether catheter ablation offers superior outcomes compared to medical therapy for VT in all patients with SHD. OBJECTIVE: To determine in patients with SHD and spontaneous or inducible VT, if catheter ablation is more efficacious than medical therapy in control of VT during follow-up. DESIGN: Randomised controlled trial including 162 patients, with an allocation ratio of 1:1, stratified by left ventricular ejection fraction (LVEF) and geographical region of site, with a median follow-up of 18-months and a minimum follow-up of 1 year. SETTING: Multicentre study performed in centres across Australia. PARTICIPANTS: Structural heart disease patients with sustained VT or inducible VT (n=162). INTERVENTION: Early treatment, within 30 days of randomisation, with catheter ablation (intervention) or initial treatment with antiarrhythmic drugs only (control). MAIN OUTCOMES, MEASURES, AND RESULTS: Primary endpoint will be a composite of recurrent VT, VT storm (≥3 VT episodes in 24 hrs or incessant VT), or death. Secondary outcomes will include each of the individual primary endpoints, VT burden (number of VT episodes in the 6 months preceding intervention compared to the 6 months after intervention), cardiovascular hospitalisation, mortality (including all-cause mortality, cardiac death, and non-cardiac death) and LVEF (assessed by transthoracic echocardiography from baseline to 6-, 12-, 24- and 36-months post intervention). CONCLUSIONS AND RELEVANCE: The Catheter Ablation versus Anti-arrhythmic Drugs for Ventricular Tachycardia (CAAD-VT) trial will help determine whether catheter ablation is superior to antiarrhythmic drug therapy alone, in patients with SHD-related VT. TRIAL REGISTRY: Australian New Zealand Clinical Trials Registry (ANZCTR) TRIAL REGISTRATION ID: ACTRN12620000045910 TRIAL REGISTRATION URL: https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=377617&isReview=true.


Assuntos
Ablação por Cateter , Isquemia Miocárdica , Taquicardia Ventricular , Humanos , Antiarrítmicos/uso terapêutico , Volume Sistólico , Estudos Prospectivos , Resultado do Tratamento , Função Ventricular Esquerda , Austrália/epidemiologia , Taquicardia Ventricular/cirurgia , Taquicardia Ventricular/etiologia , Isquemia Miocárdica/cirurgia , Ablação por Cateter/métodos , Ensaios Clínicos Controlados Aleatórios como Assunto , Estudos Multicêntricos como Assunto
7.
Soft Matter ; 18(44): 8504-8513, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36325938

RESUMO

Diabetes is associated with increased risk of breast cancer and worse prognoses for cancer patients. Hyperglycemia can result in increased glycation, the process wherein crosslinkages are formed between sugars and extracellular matrix (ECM) proteins through the formation of advanced glycation endproducts (AGEs). Although accumulation of AGEs occurs naturally in vivo over time, it is greatly accelerated by the hyperglycemic environment of diabetic patients. AGE accumulation has been linked to stiffening-related diseases such as hypertension, cancer metastasis, and neurodegenerative disorders. In response, several AGE-inhibiting and AGE-breaking drugs have received significant attention for their ability to reduce AGE accumulation. The resulting effects of these drugs on cell behavior is not well understood. In this study, we measured cancer cell migration in glycated collagen with and without the AGE-breaking drug alagebrium chloride (ALT711) to investigate the drug's ability to disrupt ECM crosslinks and reduce tumor cell spreading, contractility, and migration. The mechanical properties and chemical composition of collagen glycated with increasing concentrations of glucose with and without ALT711 treatment were measured. Increasing glucose concentration resulted in increased AGE accumulation and matrix stiffness as well as increased cancer cell contractility, elongation, and migration. Treatment with ALT711 significantly lowered AGE accumulation within the collagen, decreased collagen stiffness, and reduced cell migration. These findings suggest that while hyperglycemia can increase collagen matrix stiffness, resulting in increased breast cancer cell migration, an AGE-breaker can reverse this phenotype and may be a viable treatment option for reducing cancer cell migration due to glycation.


Assuntos
Hiperglicemia , Neoplasias , Humanos , Produtos Finais de Glicação Avançada/metabolismo , Movimento Celular , Colágeno/metabolismo , Glucose , Neoplasias/tratamento farmacológico
8.
Sci Adv ; 8(46): eabo1673, 2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36399580

RESUMO

Diabetes mellitus is a complex metabolic disorder that is associated with an increased risk of breast cancer. Despite this correlation, the interplay between tumor progression and diabetes, particularly with regard to stiffening of the extracellular matrix, is still mechanistically unclear. Here, we established a murine model where hyperglycemia was induced before breast tumor development. Using the murine model, in vitro systems, and patient samples, we show that hyperglycemia increases tumor growth, extracellular matrix stiffness, glycation, and epithelial-mesenchymal transition of tumor cells. Upon inhibition of glycation or mechanotransduction in diabetic mice, these same metrics are reduced to levels comparable with nondiabetic tumors. Together, our study describes a novel biomechanical mechanism by which diabetic hyperglycemia promotes breast tumor progression via glycating the extracellular matrix. In addition, our work provides evidence that glycation inhibition is a potential adjuvant therapy for diabetic cancer patients due to the key role of matrix stiffening in both diseases.


Assuntos
Diabetes Mellitus Experimental , Hiperglicemia , Neoplasias , Camundongos , Animais , Mecanotransdução Celular , Modelos Animais de Doenças , Matriz Extracelular/metabolismo , Neoplasias/metabolismo
9.
Angew Chem Int Ed Engl ; 61(50): e202212393, 2022 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-36227272

RESUMO

Mupirocin is a clinically important antibiotic produced by Pseudomonas fluorescens NCIMB 10586 that is assembled by a complex trans-AT polyketide synthase. The polyketide fragment, monic acid, is esterified by a 9-hydroxynonanoic acid (9HN) side chain which is essential for biological activity. The ester side chain assembly is initialised from a 3-hydroxypropionate (3HP) starter unit attached to the acyl carrier protein (ACP) MacpD, but the fate of this species is unknown. Herein we report the application of NMR spectroscopy, mass spectrometry, chemical probes and in vitro assays to establish the remaining steps of 9HN biosynthesis. These investigations reveal a complex interplay between a novel iterative or "stuttering" KS-AT didomain (MmpF), the multidomain module MmpB and multiple ACPs. This work has important implications for understanding the late-stage biosynthetic steps of mupirocin and will be important for future engineering of related trans-AT biosynthetic pathways (e.g. thiomarinol).


Assuntos
Antibacterianos , Mupirocina , Antibacterianos/química , Proteína de Transporte de Acila/metabolismo , Policetídeo Sintases/metabolismo
10.
Front Pharmacol ; 13: 846992, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35662692

RESUMO

Voltage-gated sodium channel NaV1.8 regulates transmission of pain signals to the brain. While NaV1.8 has the potential to serve as a drug target, the molecular mechanisms that shape NaV1.8 gating are not completely understood, particularly mechanisms that couple activation to inactivation. Interactions between toxin producing animals and their predators provide a novel approach for investigating NaV structure-function relationships. Arizona bark scorpions produce Na+ channel toxins that initiate pain signaling. However, in predatory grasshopper mice, toxins inhibit NaV1.8 currents and block pain signals. A screen of synthetic peptide toxins predicted from bark scorpion venom showed that peptide NaTx36 inhibited Na+ current recorded from a recombinant grasshopper mouse NaV1.8 channel (OtNaV1.8). Toxin NaTx36 hyperpolarized OtNaV1.8 activation, steady-state fast inactivation, and slow inactivation. Mutagenesis revealed that the first gating charge in the domain I (DI) S4 voltage sensor and an acidic amino acid (E) in the DII SS2 - S6 pore loop are critical for the inhibitory effects of NaTx36. Computational modeling showed that a DI S1 - S2 asparagine (N) stabilizes the NaTx36 - OtNaV1.8 complex while residues in the DI S3 - S4 linker and S4 voltage sensor form electrostatic interactions that allow a toxin glutamine (Q) to contact the first S4 gating charge. Surprisingly, the models predicted that NaTx36 contacts amino acids in the DII S5 - SS1 pore loop instead of the SS2 - S6 loop; the DII SS2 - S6 loop motif (QVSE) alters the conformation of the DII S5 - SS1 pore loop, enhancing allosteric interactions between toxin and the DII S5 - SS1 pore loop. Few toxins have been identified that modify NaV1.8 gating. Moreover, few toxins have been described that modify sodium channel gating via the DI S4 voltage sensor. Thus, NaTx36 and OtNaV1.8 provide tools for investigating the structure-activity relationship between channel activation and inactivation gating, and the connection to alternative pain phenotypes.

11.
Integr Comp Biol ; 62(2): 237-251, 2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-35587374

RESUMO

The gut microbial communities of mammals provide numerous benefits to their hosts. However, given the recent development of the microbiome field, we still lack a thorough understanding of the variety of ecological and evolutionary factors that structure these communities across species. Metabarcoding is a powerful technique that allows for multiple microbial ecology questions to be investigated simultaneously. Here, we employed DNA metabarcoding techniques, predictive metagenomics, and culture-dependent techniques to inventory the gut microbial communities of several species of rodent collected from the same environment that employ different natural feeding strategies [granivorous pocket mice (Chaetodipus penicillatus); granivorous kangaroo rats (Dipodomys merriami); herbivorous woodrats (Neotoma albigula); omnivorous cactus mice (Peromyscus eremicus); and insectivorous grasshopper mice (Onychomys torridus)]. Of particular interest were shifts in gut microbial communities in rodent species with herbivorous and insectivorous diets, given the high amounts of indigestible fibers and chitinous exoskeleton in these diets, respectively. We found that herbivorous woodrats harbored the greatest microbial diversity. Granivorous pocket mice and kangaroo rats had the highest abundances of the genus Ruminococcus and highest predicted abundances of genes related to the digestion of fiber, representing potential adaptations in these species to the fiber content of seeds and the limitations to digestion given their small body size. Insectivorous grasshopper mice exhibited the greatest inter-individual variation in the membership of their microbiomes, and also exhibited the highest predicted abundances of chitin-degrading genes. Culture-based approaches identified 178 microbial isolates (primarily Bacillus and Enterococcus), with some capable of degrading cellulose and chitin. We observed several instances of strain-level diversity in these metabolic capabilities across isolates, somewhat highlighting the limitations and hidden diversity underlying DNA metabarcoding techniques. However, these methods offer power in allowing the investigation of several questions concurrently, thus enhancing our understanding of gut microbial ecology.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Quitina , Dipodomys , Herbivoria , Peromyscus , Roedores
13.
Nat Genet ; 54(3): 232-239, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35210625

RESUMO

Brugada syndrome (BrS) is a cardiac arrhythmia disorder associated with sudden death in young adults. With the exception of SCN5A, encoding the cardiac sodium channel NaV1.5, susceptibility genes remain largely unknown. Here we performed a genome-wide association meta-analysis comprising 2,820 unrelated cases with BrS and 10,001 controls, and identified 21 association signals at 12 loci (10 new). Single nucleotide polymorphism (SNP)-heritability estimates indicate a strong polygenic influence. Polygenic risk score analyses based on the 21 susceptibility variants demonstrate varying cumulative contribution of common risk alleles among different patient subgroups, as well as genetic associations with cardiac electrical traits and disorders in the general population. The predominance of cardiac transcription factor loci indicates that transcriptional regulation is a key feature of BrS pathogenesis. Furthermore, functional studies conducted on MAPRE2, encoding the microtubule plus-end binding protein EB2, point to microtubule-related trafficking effects on NaV1.5 expression as a new underlying molecular mechanism. Taken together, these findings broaden our understanding of the genetic architecture of BrS and provide new insights into its molecular underpinnings.


Assuntos
Síndrome de Brugada , Alelos , Síndrome de Brugada/complicações , Síndrome de Brugada/genética , Síndrome de Brugada/metabolismo , Suscetibilidade a Doenças/complicações , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Proteínas Associadas aos Microtúbulos/genética , Mutação , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Adulto Jovem
14.
J Arrhythm ; 38(1): 106-114, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35222756

RESUMO

BACKGROUND: Novel ablation catheters with mini electrode (ME) sensing have become available but their utility is unclear. We investigated whether ablation of the cavotricuspid isthmus (CTI) for atrial flutter (AFL) would be improved using ME signals. METHODS: Sixty-one patients (76% male, 63 ± 10 years) with CTI-dependent AFL underwent ablation using a maximum voltage-guided approach, randomized to either standard 8 mm non-irrigated catheter with bipolar signals or IntellaTip MiFi catheter using ME signals alone. RESULTS: Acute bidirectional block was achieved in 97%. Mean follow-up was 16.7 ± 10 months. The median number of ablation lesions was 13 in both groups (range 3-62 vs. 1-43, p = .85). No significant differences were observed in AFL recurrences (17% vs. 11%, p = .7), median procedure durations (97 min [interquartile range (IQR), 71-121] vs. 87 min [IQR, 72-107], p = .55) or fluoroscopy times (31 min [IQR, 21-52] vs. 38 min [IQR, 25-70], p = .56). Amplitudes of ME signals were on average 160% greater than blinded bipolar signals. In 23.7% of lesions where bipolar signals were difficult to interpret, 13.6% showed a clear ME signal. CONCLUSIONS: There was no difference in the effectiveness of CTI ablation guided by ME signals, compared with using bipolar signals from a standard 8 mm ablation catheter. While ME signal amplitudes were larger and sometimes present when the bipolar signal was unclear, this did not improve procedural characteristics or outcomes. The results suggest future research should focus on lesion integrity rather than signal sensing.

15.
Angew Chem Weinheim Bergstr Ger ; 134(50): e202212393, 2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38505625

RESUMO

Mupirocin is a clinically important antibiotic produced by Pseudomonas fluorescens NCIMB 10586 that is assembled by a complex trans-AT polyketide synthase. The polyketide fragment, monic acid, is esterified by a 9-hydroxynonanoic acid (9HN) side chain which is essential for biological activity. The ester side chain assembly is initialised from a 3-hydroxypropionate (3HP) starter unit attached to the acyl carrier protein (ACP) MacpD, but the fate of this species is unknown. Herein we report the application of NMR spectroscopy, mass spectrometry, chemical probes and in vitro assays to establish the remaining steps of 9HN biosynthesis. These investigations reveal a complex interplay between a novel iterative or "stuttering" KS-AT didomain (MmpF), the multidomain module MmpB and multiple ACPs. This work has important implications for understanding the late-stage biosynthetic steps of mupirocin and will be important for future engineering of related trans-AT biosynthetic pathways (e.g. thiomarinol).

17.
J Cardiovasc Electrophysiol ; 31(12): 3207-3214, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32936492

RESUMO

INTRODUCTION: Septal accessory pathway (AP) ablation can be challenging due to the complex anatomy of the septal region. The decision to access the left atrium (LA) is often made after failure of ablation from the right. We sought to establish whether the difference between ventriculo-atrial (VA) time during right ventricular (RV) apical pacing versus the VA during tachycardia would help establish the successful site for ablation of septal APs. METHODS: Intracardiac electrograms of patients with orthodromic reciprocating tachycardia (ORT) using a septal AP with successful catheter ablation were reviewed. The ∆VA was the difference between the VA interval during RV apical pacing and the VA interval during ORT. The difference in the VA interval during right ventricular entrainment and ORT (StimA-VA) was also measured. RESULTS: The median ∆VA time was significantly less in patients with a septal AP ablated on the right side compared with patients with a septal AP ablated on the left side (12 ± 19 vs. 56 ± 10 ms, p < .001). The StimA-VA was significantly different between the two groups (22 ± 14 vs. 53 ± 9 ms, p < .001). The ∆VA and StimA-VA were always ≤ 40 ms in patients with non-decremental septal APs ablated from the right side and always greater than 40 ms in those with septal APs ablated from the left. CONCLUSION: ΔVA and StimA-VA values identified with RV apical pacing in the setting of ORT involving a septal AP predict when left atrial access will be necessary for successful ablation.


Assuntos
Feixe Acessório Atrioventricular , Ablação por Cateter , Taquicardia por Reentrada no Nó Atrioventricular , Feixe Acessório Atrioventricular/cirurgia , Fascículo Atrioventricular , Ablação por Cateter/efeitos adversos , Eletrocardiografia , Sistema de Condução Cardíaco/diagnóstico por imagem , Sistema de Condução Cardíaco/cirurgia , Humanos , Taquicardia por Reentrada no Nó Atrioventricular/cirurgia
18.
Toxins (Basel) ; 12(4)2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-32316477

RESUMO

Pain, though unpleasant, is adaptive in calling an animal's attention to potential tissue damage. A long list of animals representing diverse taxa possess venom-mediated, pain-inducing bites or stings that work by co-opting the pain-sensing pathways of potential enemies. Typically, such venoms include toxins that cause tissue damage or disrupt neuronal activity, rendering painful stings honest indicators of harm. But could pain alone be sufficient for deterring a hungry predator? Some venomologists have argued "no"; predators, in the absence of injury, would "see through" the bluff of a painful but otherwise benign sting or bite. Because most algogenic venoms are also toxic (although not vice versa), it has been difficult to disentangle the relative contributions of each component to predator deterrence. Southern grasshopper mice (Onychomys torridus) are voracious predators of arthropods, feeding on a diversity of scorpion species whose stings vary in painfulness, including painful Arizona bark scorpions (Centruroides sculpturatus) and essentially painless stripe-tailed scorpions (Paravaejovis spinigerus). Moreover, southern grasshopper mice have evolved resistance to the lethal toxins in bark scorpion venom, rendering a sting from these scorpions painful but harmless. Results from a series of laboratory experiments demonstrate that painful stings matter. Grasshopper mice preferred to prey on stripe-tailed scorpions rather than bark scorpions when both species could sting; the preference disappeared when each species had their stingers blocked. A painful sting therefore appears necessary for a scorpion to deter a hungry grasshopper mouse, but it may not always be sufficient: after first attacking and consuming a painless stripe-tailed scorpion, many grasshopper mice went on to attack, kill, and eat a bark scorpion even when the scorpion was capable of stinging. Defensive venoms that result in tissue damage or neurological dysfunction may, thus, be required to condition greater aversion than venoms causing pain alone.


Assuntos
Dor , Comportamento Predatório , Picadas de Escorpião , Venenos de Escorpião , Animais , Feminino , Masculino , Camundongos , Escorpiões
19.
PLoS One ; 15(4): e0231470, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32320427

RESUMO

The prognosis for people with the high-grade brain tumor glioblastoma is very poor, due largely to low cell death in response to genotoxic therapy. The transcription factor BCL6, a protein that normally suppresses the DNA damage response during immune cell maturation, and a known driver of B-cell lymphoma, was shown to mediate the survival of glioblastoma cells. Expression was observed in glioblastoma tumor specimens and cell lines. When BCL6 expression or activity was reduced in these lines, increased apoptosis and a profound loss of proliferation was observed, consistent with gene expression signatures suggestive of anti-apoptotic and pro-survival signaling role for BCL6 in glioblastoma. Further, treatment with the standard therapies for glioblastoma-ionizing radiation and temozolomide-both induced BCL6 expression in vitro, and an in vivo orthotopic animal model of glioblastoma. Importantly, inhibition of BCL6 in combination with genotoxic therapies enhanced the therapeutic effect. Together these data demonstrate that BCL6 is an active transcription factor in glioblastoma, that it drives survival of cells, and that it increased with DNA damage, which increased the survival rate of therapy-treated cells. This makes BCL6 an excellent therapeutic target in glioblastoma-by increasing sensitivity to standard DNA damaging therapy, BCL6 inhibitors have real potential to improve the outcome for people with this disease.


Assuntos
Neoplasias Encefálicas/genética , Dano ao DNA/genética , Glioblastoma/genética , Oncogenes/genética , Proteínas Proto-Oncogênicas c-bcl-6/genética , Regulação para Cima/genética , Animais , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/genética , Ativação Transcricional/genética , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...