Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JCI Insight ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38917318

RESUMO

The average time-to-degree for completing a life sciences PhD in the U.S. is longer for single-degree than dual-degree trainees, supporting a perception that the PhD training of MD-PhDs is less rigorous or fulsome. To determine whether the duration and impact of graduate training is influenced by degree format, we analyzed data for the 2011-2016 graduates of three Harvard Medical School PhD programs. Linear mixed effects models were used to determine the association between degree type (MD-PhD vs. PhD) and research outcomes, including time-to-degree, time-to-thesis-defense, and publications submitted during the PhD. Although pursuing an MD-PhD was associated with a 1.5-year shorter time-to-PhD-degree, basing this calculation on the official PhD period does not account for completion of early PhD requirements, including research rotations and qualifying coursework, during the first two years of medical school. There was no association between degree format and the total number of first-authored or overall publications, although pursuing a dual degree was associated with increased impact metrics of published papers. The results highlight that despite the optically shorter PhD durations of MD-PhD graduates based on graduate program enrollment period, research training is on par with their single-degree peers, rendering MD-PhD graduates well equipped to become successful scientific investigators.

2.
Nicotine Tob Res ; 24(3): 395-399, 2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-34519792

RESUMO

INTRODUCTION: Alveolar macrophages (AMs) are lung-resident immune cells that phagocytose inhaled particles and pathogens, and help coordinate the lung's immune response to infection. Little is known about the impact of chronic e-cigarette use (ie, vaping) on this important pulmonary cell type. Thus, we determined the effect of vaping on AM phenotype and gene expression. AIMS AND METHODS: We recruited never-smokers, smokers, and e-cigarette users (vapers) and performed research bronchoscopies to isolate AMs from bronchoalveolar lavage fluid samples and epithelial cells from bronchial brushings. We then performed morphological analyses and used the Nanostring platform to look for changes in gene expression. RESULTS: AMs obtained from smokers and vapers were phenotypically distinct from those obtained from nonsmokers, and from each other. Immunocytochemistry revealed that vapers AMs had significantly elevated inducible nitric oxide synthase (M1) expression and significantly reduced CD301a (M2) expression compared with nonsmokers or smokers. Vapers' AMs and bronchial epithelia exhibited unique changes in gene expression compared with nonsmokers or smokers. Moreover, vapers' AMs were the most affected of all groups and had 124 genes uniquely downregulated. Gene ontology analysis revealed that vapers and smokers had opposing changes in biological processes. CONCLUSIONS: These data indicate that vaping causes unique changes to AMs and bronchial epithelia compared with nonsmokers and smokers which may impact pulmonary host defense. IMPLICATIONS: These data indicate that normal "healthy" vapers have altered AMs and may be at risk of developing abnormal immune responses to inflammatory stimuli.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Produtos do Tabaco , Vaping , Expressão Gênica , Humanos , Macrófagos Alveolares , Vaping/efeitos adversos
3.
JCI Insight ; 5(4)2020 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-32102982

RESUMO

The 2018 National MD-PhD Program Outcomes Study highlighted the critical need to increase MD-PhD trainee diversity and close the gender gap in MD-PhD enrollment. This Association of American Medical Colleges imperative prompted us to evaluate trends in female matriculation from our institutional MD-PhD program compared with national data. Based on a 10-year review of Harvard/MIT Medical Scientist Training Program admissions, we observed a sharp and sustained increase in female matriculants for the past 5 years that is well above the national average. We report our experience with achieving gender parity among matriculants of our MD-PhD program, identify the specific stage of the admissions process where the gender balance acutely shifted, and attribute the increase in female matriculation to concrete administrative changes that were put into place just prior to the observed gender balance shift. These changes included increasing the number of faculty participants in application screening and awardee selection and establishing gender balance among faculty decision makers. We believe that adopting basic administrative practices geared toward increasing the diversity of perspectives among admissions faculty has the potential to expedite gender parity of MD-PhD matriculants nationwide and could eventually help achieve gender balance in the national physician-scientist workforce.


Assuntos
Educação de Pós-Graduação em Medicina/organização & administração , Fatores Sexuais , Feminino , Humanos , Masculino , Pesquisadores
4.
Am J Physiol Lung Cell Mol Physiol ; 318(2): L226-L241, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31693394

RESUMO

E-cigarettes are noncombustible, electronic nicotine-delivery devices that aerosolize an e-liquid, i.e., nicotine, in a propylene glycol-vegetable glycerin vehicle that also contains flavors. While the effects of nicotine are relatively well understood, more information regarding the potential biological effects of the other e-liquid constituents is needed. This is a serious concern, because e-liquids are available in >7,000 distinct flavors. We previously demonstrated that many e-liquids affect cell growth/viability through an unknown mechanism. Since Ca2+ is a ubiquitous second messenger that regulates cell growth, we characterized the effects of e-liquids on cellular Ca2+ homeostasis. To better understand the extent of this effect, we screened e-liquids for their ability to alter cytosolic Ca2+ levels and found that 42 of 100 flavored e-liquids elicited a cellular Ca2+ response. Banana Pudding (BP) e-liquid, a representative e-liquid from this group, caused phospholipase C activation, endoplasmic reticulum (ER) Ca2+ release, store-operated Ca2+ entry (SOCE), and protein kinase C (PKCα) phosphorylation. However, longer exposures to BP e-liquid depleted ER Ca2+ stores and inhibited SOCE, suggesting that this e-liquid may alter Ca2+ homeostasis by short- and long-term mechanisms. Since dysregulation of Ca2+ signaling can cause chronic inflammation, ER stress, and abnormal cell growth, flavored e-cigarette products that can elicit cell Ca2+ responses should be further screened for potential toxicity.


Assuntos
Cálcio/metabolismo , Citoplasma/metabolismo , Sistemas Eletrônicos de Liberação de Nicotina , Epitélio/metabolismo , Aromatizantes/efeitos adversos , Sistema Respiratório/metabolismo , Citoplasma/efeitos dos fármacos , Citosol/efeitos dos fármacos , Citosol/metabolismo , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Epitélio/efeitos dos fármacos , Células HEK293 , Humanos , Fosfatos de Inositol/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Musa , Proteína ORAI1/metabolismo , Fosforilação/efeitos dos fármacos , Proteína Quinase C-alfa/metabolismo , Sistema Respiratório/efeitos dos fármacos , Molécula 1 de Interação Estromal/metabolismo , Tapsigargina/farmacologia , Fosfolipases Tipo C/metabolismo , Vaping
5.
Am J Respir Crit Care Med ; 198(1): 67-76, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29481290

RESUMO

RATIONALE: E-cigarettes vaporize propylene glycol/vegetable glycerin (PG/VG), nicotine, and flavorings. However, the long-term health effects of exposing lungs to vaped e-liquids are unknown. OBJECTIVES: To determine the effects of chronic vaping on pulmonary epithelia. METHODS: We performed research bronchoscopies on healthy nonsmokers, cigarette smokers, and e-cigarette users (vapers) and obtained bronchial brush biopsies and lavage samples from these subjects for proteomic investigation. We further employed in vitro and murine exposure models to support our human findings. MEASUREMENTS AND MAIN RESULTS: Visual inspection by bronchoscopy revealed that vaper airways appeared friable and erythematous. Epithelial cells from biopsy samples revealed approximately 300 proteins that were differentially expressed in smoker and vaper airways, with only 78 proteins being commonly altered in both groups and 113 uniquely altered in vapers. For example, CYP1B1 (cytochrome P450 family 1 subfamily B member 1), MUC5AC (mucin 5 AC), and MUC4 levels were increased in vapers. Aerosolized PG/VG alone significantly increased MUC5AC protein in human airway epithelial cultures and in murine nasal epithelia in vivo. We also found that e-liquids rapidly entered cells and that PG/VG reduced membrane fluidity and impaired protein diffusion. CONCLUSIONS: We conclude that chronic vaping exerts marked biological effects on the lung and that these effects may in part be mediated by the PG/VG base. These changes are likely not harmless and may have clinical implications for the development of chronic lung disease. Further studies will be required to determine the full extent of vaping on the lung.


Assuntos
Brônquios/efeitos dos fármacos , Sistemas Eletrônicos de Liberação de Nicotina , Células Epiteliais/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Nicotina/efeitos adversos , Proteoma/efeitos dos fármacos , Fumantes , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
6.
Am J Physiol Lung Cell Mol Physiol ; 313(1): L52-L66, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28428175

RESUMO

E-cigarettes are generally thought of as a safer smoking alternative to traditional cigarettes. However, little is known about the effects of e-cigarette liquids (e-liquids) on the lung. Since over 7,000 unique flavors have been identified for purchase in the United States, our goal was to conduct a screen that would test whether different flavored e-liquids exhibited different toxicant profiles. We tested the effects of 13 different flavored e-liquids [with nicotine and propylene glycol/vegetable glycerin (PG/VG) serving as controls] on a lung epithelial cell line (CALU3). Using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay as an indicator of cell proliferation/viability, we demonstrated a dose-dependent decrease of MTT metabolism by all flavors tested. However, a group of four flavors consistently showed significantly greater toxicity compared with the PG/VG control, indicating the potential for some flavors to elicit more harmful effects than others. We also tested the aerosolized "vapor" from select e-liquids on cells and found similar dose-dependent trends, suggesting that direct e-liquid exposures are a justifiable first-pass screening approach for determining relative e-liquid toxicity. We then identified individual chemical constituents for all 13 flavors using gas chromatography-mass spectrometry. These data revealed that beyond nicotine and PG/VG, the 13 flavored e-liquids have diverse chemical constituents. Since all of the flavors exhibited some degree of toxicity and a diverse array of chemical constituents with little inhalation toxicity available, we conclude that flavored e-liquids should be extensively tested on a case-by-case basis to determine the potential for toxicity in the lung and elsewhere.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Células Epiteliais/citologia , Pulmão/citologia , Aerossóis , Morte Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cinnamomum aromaticum/química , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Concentração Inibidora 50 , Mentol/farmacologia , Nicotina/farmacologia
7.
Am J Physiol Lung Cell Mol Physiol ; 309(12): L1398-409, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26408554

RESUMO

Chronic tobacco smoking is a major cause of preventable morbidity and mortality worldwide. In the lung, tobacco smoking increases the risk of lung cancer, and also causes chronic obstructive pulmonary disease (COPD), which encompasses both emphysema and chronic bronchitis. E-cigarettes (E-Cigs), or electronic nicotine delivery systems, were developed over a decade ago and are designed to deliver nicotine without combusting tobacco. Although tobacco smoking has declined since the 1950s, E-Cig usage has increased, attracting both former tobacco smokers and never smokers. E-Cig liquids (e-liquids) contain nicotine in a glycerol/propylene glycol vehicle with flavorings, which are vaporized and inhaled. To date, neither E-Cig devices, nor e-liquids, are regulated by the Food and Drug Administration (FDA). The FDA has proposed a deeming rule, which aims to initiate legislation to regulate E-Cigs, but the timeline to take effect is uncertain. Proponents of E-Cigs say that they are safe and should not be regulated. Opposition is varied, with some opponents proposing that E-Cig usage will introduce a new generation to nicotine addiction, reversing the decline seen with tobacco smoking, or that E-Cigs generally may not be safe and will trigger diseases like tobacco. In this review, we shall discuss what is known about the effects of E-Cigs on the mammalian lung and isolated lung cells in vitro. We hope that collating this data will help illustrate gaps in the knowledge of this burgeoning field, directing researchers toward answering whether or not E-Cigs are capable of causing disease.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina/efeitos adversos , Pneumopatias/induzido quimicamente , Pneumopatias/etiologia , Pulmão/efeitos dos fármacos , Nicotiana/efeitos adversos , Fumar/efeitos adversos , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...