Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Plant Pathol ; 22(8): 984-1005, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34075700

RESUMO

Grapevine leafroll-associated virus (GLRaV) infections are accompanied by symptoms influenced by host genotype, rootstock, environment, and which individual or combination of GLRaVs is present. Using a dedicated experimental vineyard, we studied the responses to GLRaVs in ripening berries from Cabernet Franc grapevines grafted to different rootstocks and with zero, one, or pairs of leafroll infection(s). RNA sequencing data were mapped to a high-quality Cabernet Franc genome reference assembled to carry out this study and integrated with hormone and metabolite abundance data. This study characterized conserved and condition-dependent responses to GLRaV infection(s). Common responses to GLRaVs were reproduced in two consecutive years and occurred in plants grafted to different rootstocks in more than one infection condition. Though different infections were inconsistently distinguishable from one another, the effects of infections in plants grafted to different rootstocks were distinct at each developmental stage. Conserved responses included the modulation of genes related to pathogen detection, abscisic acid (ABA) signalling, phenylpropanoid biosynthesis, and cytoskeleton remodelling. ABA, ABA glucose ester, ABA and hormone signalling-related gene expression, and the expression of genes in several transcription factor families differentiated the effects of GLRaVs in berries from Cabernet Franc grapevines grafted to different rootstocks. These results support that ABA participates in the shared responses to GLRaV infection and differentiates the responses observed in grapevines grafted to different rootstocks.


Assuntos
Ácido Abscísico , Vitis , Frutas , Doenças das Plantas/genética , Vírus Satélites , Vitis/genética
2.
PLoS One ; 13(12): e0208862, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30540844

RESUMO

Grapevine leafroll-associated virus 3 (GLRaV-3) is the most widely prevalent and economically important of the complex of RNA viruses associated with grapevine leafroll disease (GLD). Phylogenetic studies have grouped GLRaV-3 isolates into nine different monophyletic groups and four supergroups, making GLRaV-3 a genetically highly diverse virus species. In addition, new divergent variants have been discovered recently around the world. Accurate identification of the virus is an essential component in the management and control of GLRaV-3; however, the diversity of GLRaV-3, coupled with the limited sequence information, have complicated the development of a reliable detection assay. In this study, GLRaV-3 sequence data available in GenBank and those generated at Foundation Plant Services, University of California-Davis, was used to develop a new RT-qPCR assay with the capacity to detect all known GLRaV-3 variants. The new assay, referred to as FPST, was challenged against samples that included plants infected with different GLRaV-3 variants and originating from 46 countries. The FPST assay detected all known GLRaV-3 variants, including the highly divergent variants, by amplifying a small highly conserved region in the 3' untranslated terminal region (UTR) of the virus genome. The reliability of the new RT-qPCR assay was confirmed by an enzyme linked immunosorbent assay (ELISA) that can detect all known GLRaV-3 variants characterized to date. Additionally, three new GLRaV-3 divergent variants, represented by four isolates, were identified using a hierarchical testing process involving the FPST assay, GLRaV-3 variant-specific assays and high-throughput sequencing analysis. These variants were distantly related to groups I, II, III, V, VI, VII and IX, but much similar to GLRaV-3 variants with no assigned group; thus, they may represent new clades. Finally, based on the phylogenetic analysis, a new GLRaV-3 subclade is proposed and named as group X.


Assuntos
Regiões 3' não Traduzidas , Closteroviridae , Variação Genética , Genoma Viral , Vitis/virologia , Closteroviridae/classificação , Closteroviridae/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Vitis/genética
3.
Plant Dis ; 102(7): 1419-1425, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30673557

RESUMO

Pistachio (Pistacia vera L.) trees from the National Clonal Germplasm Repository (NCGR) and orchards in California were surveyed for viruses and virus-like agents by high-throughput sequencing (HTS). Analyses of sequence information from 60 trees identified a novel virus, provisionally named "Pistachio ampelovirus A" (PAVA), in the NCGR that showed low amino acid sequence identity (approximately 42%) compared with members of the genus Ampelovirus (family Closteroviridae). A putative viroid, provisionally named "Citrus bark cracking viroid-pistachio" (CBCVd-pis), was also found in the NCGR and showed approximately 87% similarity to Citrus bark cracking viroid (CBCVd, genus Cocadviroid, family Pospiviroidae). Both PAVA and CBCVd-pis were graft transmissible to healthy UCB-1 hybrid rootstock seedlings (P. atlantica × P. integerrima). A field survey of 123 trees from commercial orchards found no incidence of PAVA but five (4%) samples were infected with CBCVd-pis. Of 675 NCGR trees, 16 (2.3%) were positive for PAVA and 172 (25.4%) were positive for CBCVd-pis by reverse-transcription polymerase chain reaction. Additionally, several contigs across multiple samples exhibited significant sequence similarity to a number of other plant virus species in different families. These findings require further study and confirmation. This study establishes the occurrence of viral and viroid populations infecting pistachio trees.


Assuntos
Closteroviridae/fisiologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Pistacia/virologia , Doenças das Plantas/virologia , Vírus de Plantas/fisiologia , Viroides/fisiologia , California , Proteínas do Capsídeo/genética , Closteroviridae/classificação , Closteroviridae/genética , Genoma Viral/genética , Interações Hospedeiro-Patógeno , Filogenia , Pistacia/classificação , Vírus de Plantas/classificação , Vírus de Plantas/genética , Especificidade da Espécie , Viroides/classificação , Viroides/genética
4.
Plant Dis ; 101(7): 1230-1235, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30682947

RESUMO

A survey was conducted on nine autochthonous grapevine cultivars grown along the Croatian coastal region. In total, 48 vines (44 from germplasm collection, 4 from vineyards) originating from 23 sites were tested for 26 viruses using molecular methods. Results revealed high infection rates with Grapevine leafroll-associated virus 3 (GLRaV-3); Grapevine virus A (GVA, both 91.7%); Grapevine fleck virus (GFkV, 87.5%); and Grapevine rupestris stem pitting-associated virus (GRSPaV, 83.3%). Other detected viruses were: Grapevine fanleaf virus (GFLV); Grapevine leafroll-associated viruses 1, 2, and strains of 4 (GLRaV-1, GLRaV-2, GLRaV-4); Grapevine viruses B, D, F (GVB, GVD, GVF); Grapevine red globe virus (GRGV); Grapevine vein feathering virus (GVFV); Grapevine Syrah virus 1 (GSyV-1); and Grapevine Pinot gris virus (GPGV). No virus-free vine was found. Mixed infections were determined in all vines, the number of viruses in a single vine ranged from three to nine. GLRaV-3 variant typing confirmed presence of group I, II, and III. Four vines with leaf deformation and mottling were positive for GPGV. Seven viruses (GLRaV-4-like group, GVD, GVE, GVF, GRGV, GSyV-1, and GVFV) were detected for the first time in Croatia. This survey confirmed the deteriorated sanitary status of autochthonous Croatian grapevine cultivars.

5.
Phytopathology ; 107(2): 240-251, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27670772

RESUMO

A novel virus was detected in grapevines by Illumina sequencing during the screening of two table grape (Vitis vinifera) accessions, cultivars Black Beet and Nagano Purple, from South Korea. The monopartite circular ssDNA genome sequence was subsequently confirmed by rolling cycle amplification, cloning and Sanger sequencing. The complete viral genomic sequence from both accessions ranged from 2,903 to 2,907 nucleotides in length and contained the conserved nonanucleotide sequence TAATATT↓AC and other sequence features typical of the family Geminiviridae, including two predicted sense and four complementary-sense open reading frames. Phylogenetic analysis placed the novel virus in a unique taxon within the family Geminiviridae. A naturally occurring defective subviral DNA was also discovered. This defective DNA molecule carried a deletion of approximately 46% of the full-length genome. Both the genomic and defective DNA molecules were graft-transmissible although no disease is yet correlated with their occurrence in Vitis spp. The tentative names Grapevine geminivirus A (GGVA) and GGVA defective DNA (GGVA D-DNA) are proposed. PCR assays developed using primers designed in the coat protein gene led to the detection of GGVA in 1.74% of 1,262 vines derived from 15 grapevine cultivars from six countries across three continents.


Assuntos
Geminiviridae/genética , Genoma Viral/genética , Doenças das Plantas/virologia , Vitis/virologia , Geminiviridae/classificação , Geminiviridae/isolamento & purificação , Fases de Leitura Aberta/genética , Filogenia , República da Coreia , Análise de Sequência de DNA
6.
Genome Announc ; 4(4)2016 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-27445385

RESUMO

A novel virus-like sequence from grapevine was identified by Illumina sequencing. The genomic organization was most similar to that of members of the genus Fabavirus Polyproteins RNA-1 and RNA-2 of the virus tentatively named grapevine fabavirus (GFabV) shared 34 to 23% sequence identities with Broad bean wilt virus 2 (BBWV2), respectively. GFabV was successfully graft transmitted to Vitis vinifera cv. Cabernet Franc.

7.
Phytopathology ; 105(6): 840-6, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25775105

RESUMO

In spring 2013, 5-year-old nectarine (Prunus persica) trees, grafted on peach rootstock Nemaguard, were found stunted in a propagation block in California. These trees had been propagated from budwood of three nectarine cultivars imported from France and cleared through the post-entry quarantine procedure. Examination of the canopy failed to reveal any obvious symptoms. However, examination of the trunks, after stripping the bark, revealed extensive pitting on the woody cylinder. To investigate the etiological agent, double-stranded RNA was extracted from bark scrapings from the scion and rootstock portions, and a cDNA library was prepared and sequenced using the Illumina platform. BLAST analysis of the contigs generated by the de novo assembly of sequence reads indicated the presence of a novel luteovirus. Complete sequence of the viral genome was determined by sequencing of three overlapping cDNA clones generated by reverse transcription-polymerase chain reaction (RT-PCR) and by rapid amplification of the 5'- and 3'-termini. The virus genome was comprised of 4,991 nucleotides with a gene organization similar to members of the genus Luteovirus (family Luteoviridae). The presence of the virus, tentatively named Nectarine stem pitting-associated virus, was confirmed in symptomatic trees by RT-PCR. Discovery of a new virus in nectarine trees after post-entry quarantine indicates the importance of including (i) metagenomic analysis by next-generation sequencing approach as an essential tool to assess the plant health status, and (ii) examination of the woody cylinders as part of the indexing process.


Assuntos
Genoma Viral/genética , Luteovirus/genética , Metagenômica , Doenças das Plantas/virologia , Prunus/virologia , Sequência de Bases , California , França , Sequenciamento de Nucleotídeos em Larga Escala , Luteovirus/isolamento & purificação , Dados de Sequência Molecular , Filogenia , Caules de Planta/virologia , Quarentena , RNA de Cadeia Dupla/genética , Análise de Sequência de DNA , Árvores
8.
Phytopathology ; 105(6): 758-63, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25689518

RESUMO

A bioassay is routinely used to determine the viral phytosanitary status of commercial grapevine propagation material in many countries around the world. That test is based on the symptoms developed in the field by specific indicator host plants that are graft-inoculated from the vines being tested. We compared the bioassay against next-generation sequencing (NGS) analysis of grapevine material. NGS is a laboratory procedure that catalogs the genomic sequences of the viruses and other pathogens extracted as DNA and RNA from infected vines. NGS analysis was found to be superior to the standard bioassay in detection of viruses of agronomic significance, including virus infections at low titers. NGS was also found to be superior to the bioassay in its comprehensiveness, the speed of its analysis, and for the discovery of novel, uncharacterized viruses.


Assuntos
Genoma Viral/genética , Doenças das Plantas/virologia , Vírus de Plantas/isolamento & purificação , Vitis/virologia , DNA Viral/genética , Sequenciamento de Nucleotídeos em Larga Escala , Vírus de Plantas/genética , RNA Viral/genética , Análise de Sequência de DNA
9.
Plant Dis ; 98(9): 1172-1185, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30699617

RESUMO

Grapevine (Vitis spp.) is one of the most widely grown fruit crops in the world. It is a deciduous woody perennial vine for which the cultivation of domesticated species began approximately 6,000 to 8,000 years ago in the Near East. Grapevines are broadly classified into red- and white-berried cultivars based on their fruit skin color, although yellow, pink, crimson, dark blue, and black-berried cultivars also exist. Grapevines can be subject to attacks by many different pests and pathogens, including graft-transmissible agents such as viruses, viroids, and phytoplasmas. Among the virus and virus-like diseases, grapevine leafroll disease (GLD) is by far the most widespread and economically damaging viral disease of grapevines in many regions around the world. The global expansion of the grape and wine industry has seen a parallel increase in the incidence and economic impact of GLD. Despite the fact that GLD was recognized as a potential threat to grape production for several decades, our knowledge of the nature of the disease is still quite limited due to a variety of challenges related to the complexity of this virus disease, the association of several distinct GLD-associated viruses, and contrasting symptoms in red- and white-berried cultivars. In view of the growing significance of GLD to wine grape production worldwide, this feature article provides an overview of the state of knowledge on the biology and epidemiology of the disease and describes management strategies currently deployed in vineyards.

10.
J Virol Methods ; 194(1-2): 138-45, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23973785

RESUMO

A single real-time multiplex quantitative PCR (qPCR) assay for the simultaneous detection of Grapevine virus A, B and D (GVA, GVB and GVD) was developed, using three different fluorescently labeled minor groove binding probes. This multiplex RT-qPCR was compared to singleplex RT-qPCR designed specifically for each virus and a conventional multiplex RT-PCR. The capacity of the multiplex RT-qPCR assay in detecting the three vitiviruses in mixed infections from a range of virus concentrations in the host was assessed. A series of cDNA derived from 48 different grapevine cultivars obtained from diverse geographical regions infected with various isolates and strains of GVA, GVB and GVD were subjected to singleplex, multiplex RT-qPCR, and conventional multiplex RT-PCR testing. The results showed that the developed multiplex RT-qPCR assay was a cost-effective diagnostic tool that could streamline the testing of grapevine vitiviruses, and replace the singleplex RT-qPCR assays, thus reducing time and labor while retaining the same sensitivity and specificity. In particular, no significant differences in detection limits were found between singleplex and multiplex RT-qPCR and specificity was not affected by the inclusion of the three primer/probe combinations within a multiplex RT-qPCR. Comparing the viral load for each virus using singleplex and multiplex RT-qPCR assays revealed no significant differences between the two assays in detecting GVB and GVD. However, while in detecting GVA using singleplex RT-qPCR assay, viral load was higher. Finally, the multiplex RT-qPCR assay was also more sensitive and time efficient than the conventional multiplex RT-PCR that was designed using degenerate primers to detect GVA, GVB and GVD. This multiplex RT-qPCR method could detect viruses in 95.83% of mixed infected samples as compared to 77.08% for multiplex RT-PCR.


Assuntos
Flexiviridae/classificação , Flexiviridae/isolamento & purificação , Reação em Cadeia da Polimerase Multiplex/métodos , Doenças das Plantas/virologia , Reação em Cadeia da Polimerase em Tempo Real/métodos , Vitis/virologia , Coinfecção/virologia , Análise Custo-Benefício , Flexiviridae/genética , Reação em Cadeia da Polimerase Multiplex/economia , Reação em Cadeia da Polimerase em Tempo Real/economia , Sensibilidade e Especificidade , Fatores de Tempo , Carga Viral/métodos
11.
Virus Genes ; 47(1): 114-8, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23703624

RESUMO

We have identified the genome of a novel viral satellite in deep sequence analysis of double-stranded RNA from grapevine. The genome was 1,060 bases in length, and encoded two open reading frames. Neither frame was related to any known plant virus gene. But translation of the longer frame showed a protein sequence similar to those of other plant virus satellites. Other than in commonalities they shared in this gene sequence, members of that group were extensively divergent. The reading frame in this gene from the novel satellite could be translationally coupled to an adjacent reading frame in the -1 register, through overlapping start/stop codons. These overlapping AUGA start/stop codons were adjacent to a sequence that could be folded into a pseudoknot structure. Field surveys with PCR probes specific for the novel satellite revealed its presence in 3% of the grapevines (n = 346) sampled.


Assuntos
Doenças das Plantas/virologia , Vírus de Plantas/isolamento & purificação , Vírus Satélites/isolamento & purificação , Proteínas Virais/genética , Vitis/virologia , Sequência de Aminoácidos , Sequência de Bases , Genoma Viral , Dados de Sequência Molecular , Filogenia , Vírus de Plantas/classificação , Vírus de Plantas/genética , RNA de Cadeia Dupla/genética , RNA Viral/genética , Vírus Satélites/classificação , Vírus Satélites/genética
12.
Phytopathology ; 103(10): 1069-76, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23656312

RESUMO

In the Napa Valley of California, vineyards of 'Cabernet Franc' (CF) clone 214, 'Cabernet Sauvignon' clone 337, and 'Zinfandel' clone 1A (Z1A) with grapevines exhibiting foliar symptoms of red blotches, marginal reddening, and red veins that were accompanied by reduced sugar accumulation in fruit at harvest were initially suspected to be infected with leafroll-associated viruses. However, reverse-transcription polymerase chain reaction (PCR) tests were negative for all known leafroll-associated viruses, with the exception of Grapevine leafroll-associated virus 2 in Z1A. Metagenomic analysis of cDNA libraries obtained from double-stranded RNA enriched nucleic acid (NA) preparations from bark scrapings of dormant canes on an Illumina platform revealed sequences having a distant relationship with members of the family Geminiviridae. Sequencing of products obtained by PCR assays using overlapping primers and rolling circle amplification (RCA) confirmed the presence of a single circular genome of 3,206 nucleotides which was nearly identical to the genome of a recently reported Grapevine cabernet franc-associated virus found in declining grapevines in New York. We propose to call this virus "Grapevine red blotch-associated virus" (GRBaV) to describe its association with grapevine red blotch disease. Primers specific to GRBaV amplified a product of expected size (557 bp) from NA preparations obtained from petioles of several diseased source vines. Chip bud inoculations successfully transmitted GRBaV to test plants of CF, as confirmed by PCR analysis. This is the first report of a DNA virus associated with red blotch disease of grapevines in California.


Assuntos
Doenças das Plantas , Vitis , Closterovirus/genética , Geminiviridae , Doenças das Plantas/virologia , RNA Viral/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Vitis/virologia
13.
Front Microbiol ; 4: 82, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23596440

RESUMO

Grapevine leafroll disease (GLD) is one of the most important grapevine viral diseases affecting grapevines worldwide. The impact on vine health, crop yield, and quality is difficult to assess due to a high number of variables, but significant economic losses are consistently reported over the lifespan of a vineyard if intervention strategies are not implemented. Several viruses from the family Closteroviridae are associated with GLD. However, Grapevine leafroll-associated virus 3 (GLRaV-3), the type species for the genus Ampelovirus, is regarded as the most important causative agent. Here we provide a general overview on various aspects of GLRaV-3, with an emphasis on the latest advances in the characterization of the genome. The full genome of several isolates have recently been sequenced and annotated, revealing the existence of several genetic variants. The classification of these variants, based on their genome sequence, will be discussed and a guideline is presented to facilitate future comparative studies. The characterization of sgRNAs produced during the infection cycle of GLRaV-3 has given some insight into the replication strategy and the putative functionality of the ORFs. The latest nucleotide sequence based molecular diagnostic techniques were shown to be more sensitive than conventional serological assays and although ELISA is not as sensitive it remains valuable for high-throughput screening and complementary to molecular diagnostics. The application of next-generation sequencing is proving to be a valuable tool to study the complexity of viral infection as well as plant pathogen interaction. Next-generation sequencing data can provide information regarding disease complexes, variants of viral species, and abundance of particular viruses. This information can be used to develop more accurate diagnostic assays. Reliable virus screening in support of robust grapevine certification programs remains the cornerstone of GLD management.

14.
J Virol ; 86(17): 9545, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22879616

RESUMO

A novel virus-like sequence from grapevine was identified by Illumina sequencing. The complete genome is 7,551 nucleotides in length, with polyadenylation at the 3' end. Translation of the sequence revealed five open reading frames (ORFs). The genomic organization was most similar to those of vitiviruses. The polymerase (ORF1) and coat protein (ORF4) genes shared 31 to 49% nucleotide and 40 to 70% amino acid sequence identities, respectively, with other grapevine vitiviruses. The virus was tentatively named grapevine virus F (GVF).


Assuntos
Flexiviridae/genética , Genoma Viral , Vitis/virologia , Sequência de Bases , Flexiviridae/química , Flexiviridae/classificação , Flexiviridae/isolamento & purificação , Dados de Sequência Molecular , Fases de Leitura Aberta , Filogenia , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico , Proteínas Virais/química , Proteínas Virais/genética
15.
Virus Res ; 163(1): 120-8, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21925555

RESUMO

Complete nucleotide sequences of the type isolate of Grapevine leafroll-associated virus 4 (GLRaV-4) and of an isolate of GLRaV-6 from cv 'Estellat' (GLRaV-6Est) were generated and compared mutually and with related viruses. The genome organization of both viruses resembled that of members of Subgroup I in the genus Ampelovirus (fam. Closteroviridae). The availability of these sequences, along with previously existing data on related GLRaVs, allowed critical review of the taxonomy and nomenclature of these viruses. In phylogenetic analyses, GLRaV-4 and -6Est consistently grouped with GLRaV-5, -9, and -Pr forming a poorly resolved sub-cluster ("GLRaV-4 group") within the genus Ampelovirus. In-depth study showed that genetic distances between these viruses do not exceed the intra-species diversity observed in other closteroviruses. In Western blots, partially purified preparations of GLRaVs -4, -5, -6 and -9 reacted only with homologous monoclonal antibodies, but were all recognized by polyclonal antisera to GLRaV-5 and GLRaV-9. Serological relatedness among these viruses was further confirmed in DAS-ELISA. In immuno-electron microscopy, GLRaV-6 particles appeared uniformly decorated with homologous monoclonal antibodies, whereas GLRaV-2, used as a control, showed "bipolar" morphology of the virion. Results of this study challenge taxonomy and nomenclature of several GLRaVs suggesting that they are divergent isolates of Grapevine leafroll-associated virus 4 and not, as has been assumed, distinct species (definitive and/or putative) in the genus Ampelovirus.


Assuntos
Closteroviridae/classificação , Ordem dos Genes , Genoma Viral , Filogenia , RNA Viral/genética , Sequência de Aminoácidos , Closteroviridae/genética , Closteroviridae/imunologia , Análise por Conglomerados , Ensaio de Imunoadsorção Enzimática , Genes Virais , Genótipo , Dados de Sequência Molecular , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Sorotipagem
16.
J Virol Methods ; 179(2): 383-9, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22172968

RESUMO

Nine isolates of Grapevine leafroll-associated virus 7 (GLRaV-7) from diverse geographical regions were sequenced to design more sensitive molecular diagnostic tools. The coat protein (CP) and heat shock protein 70 homologue (HSP70h) genes of these nine isolates were sequenced. Sequences were then used to design more sensitive molecular diagnostic tools. Sequence identity among these isolates ranged between 90 to 100% at the nucleotide and amino acid levels. One RT-PCR and two qRT-PCR assays were used to survey 86 different grapevines from the University of California, Davis Grapevine Virus Collection, the Foundation Plant Services collection and the USDA National Clonal Germplasm Repository, Davis, CA with primers designed in conserved regions of the CP and HSP70h genes. Results revealed that qRT-PCR assays designed in the HSP70h gene was more sensitive (29.07% positives) than that designed in the CP gene (22.09% positives) and both qRT-PCR assays proved to be more sensitive than RT-PCR.


Assuntos
Closteroviridae/isolamento & purificação , Doenças das Plantas/virologia , Reação em Cadeia da Polimerase em Tempo Real/métodos , Virologia/métodos , Vitis/virologia , California , Proteínas do Capsídeo/genética , Closteroviridae/genética , Primers do DNA/genética , Proteínas de Choque Térmico HSP72/genética , Dados de Sequência Molecular , RNA Viral/genética , Sensibilidade e Especificidade , Análise de Sequência de DNA , Homologia de Sequência , Proteínas Virais/genética
17.
J Virol Methods ; 179(2): 303-10, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22115785

RESUMO

In this study different instruments and methods used for tissue homogenization, RNA extraction and quantitative PCR (qPCR) based detection of grapevine RNA viruses were evaluated. Semi-automated and automated homogenization techniques were compared to process samples from grapevine petioles and cambial tissue. Four different high throughput automated nucleic acid extraction platforms were compared with the RNeasy plant extraction kit for their capacity and efficiency of extracting viral RNA from grapevine infected tissues. The RNA prepared from each extraction platform was then used as template for a comparative analysis of qPCR by One Step RT-qPCR, Two Step RT-qPCR and low density array (LDA) detection. This study showed that a thorough homogenization of grapevine tissues using the Tissue Lyser as well as DNase digestion of the purified RNA prior to cDNA synthesis improved the virus detection and yielded the lowest quantitation cycle (Cq) values in RT-qPCR. Comparison of different RNA extraction methods showed that methods implementing the magnetic bead-based technology were superior to other methods used. Comparing different qPCR detection methods, One Step RT-qPCR showed the lowest Cq values for the same sample tested compared to Two Step RT-qPCR and LDA.


Assuntos
Doenças das Plantas/virologia , Vírus de Plantas/isolamento & purificação , Vírus de RNA/isolamento & purificação , Manejo de Espécimes/métodos , Vitis/virologia , Vírus de Plantas/genética , Vírus de RNA/genética , RNA Viral/genética , RNA Viral/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
18.
Virus Res ; 163(1): 302-9, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22056321

RESUMO

Deep sequencing analysis of an asymptomatic grapevine revealed a virome containing five RNA viruses and a viroid. Of these, Grapevine leafroll-associated virus 7 (GLRaV-7), an unassigned closterovirus, was by far the most prominently represented sequence in the analysis. Graft-inoculation of the infection to another grape variety confirmed the lack of the leafroll disease symptoms, even though GLRaV-7 could be detected in the inoculated indicator plants. A 16,496 nucleotide-long genomic sequence of this virus was determined from the deep sequencing data. Its genome architecture and the sequences encoding its nine predicted proteins were compared with those of other closteroviruses. The comparison revealed that two other viruses, Little cherry virus-1 and Cordyline virus-1 formed a well supported phylogenetic cluster with GLRaV-7.


Assuntos
Closteroviridae/classificação , Closteroviridae/isolamento & purificação , Vitis/virologia , Closteroviridae/genética , Closteroviridae/crescimento & desenvolvimento , Análise por Conglomerados , Ordem dos Genes , Sequenciamento de Nucleotídeos em Larga Escala , Dados de Sequência Molecular , Filogenia , RNA Viral/genética
19.
Phytopathology ; 101(12): 1446-56, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21830956

RESUMO

The genetic diversity of 34 isolates of Grapevine leafroll-associated virus 1 (GLRaV-1) from different wine, table, and ornamental grape cultivars in California, New York, and Washington States in the United States was investigated. Segments of the heat-shock protein 70 homolog (HSP70h) gene, coat protein (CP) gene, coat protein duplicate 2 (CPd2) gene, and open reading frame 9 (p24) were amplified by reverse-transcription polymerase chain reaction, cloned, and sequenced. A pairwise comparison of nucleotide sequences revealed intra- and interisolate sequence diversity, with CPd2 and HSP70h being the most and the least divergent, respectively, among the four genomic regions studied. The normalized values for the ratio of nonsynonymous substitutions per nonsynonymous site to synonymous substitutions per synonymous site indicated different purifying selection pressures acting on each of the four genomic regions, with the CP and CPd2 being subjected to the strongest and weakest functional constraints, respectively. A global phylogenetic analysis of sequences from the four genomic regions revealed segregation of GLRaV-1 isolates into three major clades and a lack of clearly defined clustering by geographical origin. In contrast, only two lineages were apparent when the CP and CPd2 gene sequences were used in phylogenetic analyses. Putative recombination events were revealed among the HSP70h, CP, and p24 sequences. The genetic landscape of GLRaV-1 populations presented in this study provides a foundation for better understanding of the epidemiology of grapevine leafroll disease across grape-growing regions in the United States. In addition, this study will benefit grape clean plant programs across the country in improving the sanitary status of planting materials provided to nurseries and grape growers.


Assuntos
Closteroviridae/genética , Variação Genética/genética , Vírus Satélites/genética , Proteínas Virais/genética , Vitis/virologia , Sequência de Aminoácidos , Sequência de Bases , Evolução Biológica , California , Proteínas do Capsídeo/genética , Closteroviridae/classificação , Closteroviridae/isolamento & purificação , Genética Populacional , Proteínas de Choque Térmico HSP70/genética , Dados de Sequência Molecular , New York , Filogenia , Doenças das Plantas/virologia , Recombinação Genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Vírus Satélites/classificação , Vírus Satélites/isolamento & purificação , Análise de Sequência de DNA , Washington
20.
Virus Genes ; 43(1): 102-10, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21487783

RESUMO

In California, a novel closterovirus was detected in "Redglobe" grapevine, associated with graft incompatibility and given a trivial name "Grapevine rootstock stem lesion associated virus (GRSLaV)." The biological properties of the putative virus were ascertained when asymptomatic yet infected Redglobe scion buds were graft-inoculated onto test plants of Cabernet Sauvignon propagated on 18 different rootstocks. It proved lethal on test plants growing on rootstocks 1616C, 5BB, 5C, 3309C, and 1103 P, whereas latent infections occurred on the remaining scion-rootstock combinations. In contrast, GLRaV-2 type (type strain) produced only typical leafroll symptoms. In a different experiment, GLRaV-2 type was successfully sap-transmitted to N. benthamiana, whereas sap transmission of GRSLaV was unsuccessful. Double-stranded RNA was extracted from infected Redglobe grapevines, cloned, sequenced, and determined a genome length of 16,527 nucleotides. Computer-assisted analysis of open-reading frames (ORFs) revealed a genome organization typical of monopartite viruses in the genus Closterovirus with nine ORFs (range 71-79% identity) with GLRaV-2 type, the closest similar virus species within the family Closteroviridae. Also the 3'-UTR of GRSLaV consisted of 223 nucleotides with an extended oligo(A) tract similar to that of GLRaV-2 type, Beet yellow stunt virus, and Beet yellows virus. Recombinant GRSLaV coat protein was expressed in E. coli, purified, and immunized a rabbit to produce polyclonal antiserum. Serological data matched the molecular data, whereby exposed plant tissue extracts of grapevines infected by both viruses (GRSLaV and GLRaV-2) reacted positively with homologous and heterologous viral antisera but not with healthy grapevine extracts in ELISA and Western blot tests. Based on the comparative sequence data and shared antigens, GRSLaV is now considered a strain of GLRaV-2 and redesignated as Grapevine leafroll associated virus-2 Redglobe (GLRaV-2RG). Primers specific for GLRaV-2RG were developed, which did not amplify GLRaV-2 type strain. When both sets of specific primers were used in assays of different grapevine collections, the incidence of the respective viruses varied considerably, e.g., 1.7 and 13.5%, respectively, for GLRaV-2RG and GLRaV-2 type.


Assuntos
Closterovirus/classificação , Closterovirus/isolamento & purificação , Doenças das Plantas/virologia , RNA Viral/genética , Vitis/virologia , Regiões 3' não Traduzidas , Animais , Anticorpos Antivirais/imunologia , Western Blotting , California , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/imunologia , Proteínas do Capsídeo/isolamento & purificação , Closterovirus/genética , Closterovirus/patogenicidade , Análise por Conglomerados , Ensaio de Imunoadsorção Enzimática , Escherichia coli/genética , Expressão Gênica , Ordem dos Genes , Genoma Viral , Dados de Sequência Molecular , Fases de Leitura Aberta , Filogenia , Coelhos , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/isolamento & purificação , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...