Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 7(8): e41731, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22952583

RESUMO

ARHGAP22 is a RhoGAP protein comprising an N-terminal PH domain, a RhoGAP domain and a C-terminal coiled-coil domain. It has recently been identified as an Akt substrate that binds 14-3-3 proteins in response to treatment with growth factors involved in cell migration. We used a range of biophysical techniques to investigate the weak interaction between 14-3-3 and a truncated form of ARHGAP22 lacking the coiled-coil domain. This weak interaction could be stabilized by chemical cross-linking which we used to show that: a monomer of ARHGAP22 binds a dimer of 14-3-3; the ARHGAP22 PH domain is required for the 14-3-3 interaction; the RhoGAP domain is unlikely to participate in the interaction; Ser16 is the more important of two predicted 14-3-3 binding sites; and, phosphorylation of Ser16 may not be necessary for 14-3-3 interaction under the conditions we used. Small angle X-ray scattering and cross-link information were used to generate solution structures of the isolated proteins and of the cross-linked ARHGAP22:14-3-3 complex, showing that no major rearrangement occurs in either protein upon binding, and supporting a role for the PH domain and N-terminal peptide of ARHGAP22 in the 14-3-3 interaction. Small-angle X-ray scattering measurements of mixtures of ARHGAP22 and 14-3-3 were used to establish that the affinity of the interaction is ∼30 µM.


Assuntos
Proteínas 14-3-3/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Peptídeos/química , Movimento Celular , Reagentes de Ligações Cruzadas/farmacologia , Dimerização , Proteínas Ativadoras de GTPase/química , Genoma Humano , Humanos , Espectrometria de Massas/métodos , Modelos Moleculares , Fosforilação , Ligação Proteica , Conformação Proteica , Isoformas de Proteínas , Estrutura Terciária de Proteína , Espalhamento de Radiação , Transdução de Sinais , Raios X
2.
Mol Cell Biol ; 31(23): 4789-800, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21969604

RESUMO

Insulin exerts many of its metabolic actions via the canonical phosphatidylinositide 3 kinase (PI3K)/Akt pathway, leading to phosphorylation and 14-3-3 binding of key metabolic targets. We previously identified a GTPase-activating protein (GAP) for Rac1 called RhoGAP22 as an insulin-responsive 14-3-3 binding protein. Insulin increased 14-3-3 binding to RhoGAP22 fourfold, and this effect was PI3K dependent. We identified two insulin-responsive 14-3-3 binding sites (pSer(16) and pSer(395)) within RhoGAP22, and mutagenesis studies revealed a complex interplay between the phosphorylation at these two sites. Mutating Ser(16) to alanine blocked 14-3-3 binding to RhoGAP22 in vivo, and phosphorylation at Ser(16) was mediated by the kinase Akt. Overexpression of a mutant RhoGAP22 that was unable to bind 14-3-3 reduced cell motility in NIH-3T3 fibroblasts, and this effect was dependent on a functional GAP domain. Mutation of the catalytic arginine of the GAP domain of RhoGAP22 potentiated growth factor-stimulated Rac1 GTP loading. We propose that insulin and possibly growth factors such as platelet-derived growth factor may play a novel role in regulating cell migration and motility via the Akt-dependent phosphorylation of RhoGAP22, leading to modulation of Rac1 activity.


Assuntos
Movimento Celular , Proteínas Ativadoras de GTPase/metabolismo , Insulina/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas 14-3-3/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Sítios de Ligação , Domínio Catalítico , Linhagem Celular , Sequência Conservada , Cricetinae , Proteínas Ativadoras de GTPase/genética , Técnicas de Silenciamento de Genes , Humanos , Insulina/farmacologia , Camundongos , Dados de Sequência Molecular , Fosforilação , Ligação Proteica , Estrutura Terciária de Proteína , Interferência de RNA , Ratos
3.
Traffic ; 12(6): 672-81, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21401839

RESUMO

One of the most important metabolic actions of insulin is catalysing glucose uptake into skeletal muscle and adipose tissue. This is accomplished via activation of the phosphatidylinositol-3-kinase/Akt signalling pathway and subsequent translocation of GLUT4 from intracellular storage vesicles to the plasma membrane. As such, this represents an ideal system for studying the convergence of signal transduction and protein trafficking. The GLUT4 translocation process is complex, but can be dissected into at least four discrete trafficking steps. This raises the question as to which of these is the major regulated step in insulin-stimulated GLUT4 translocation. Numerous molecules have been reported to regulate GLUT4 trafficking. However, with the exception of TBC1D4, the molecular details of these distal signalling arms of the insulin signalling network and how they modify distinct steps of GLUT4 trafficking have not been established. We discuss the need to adopt a more global approach to expand and deepen our understanding of the molecular processes underpinning this system. Strategies that facilitate the generation of detailed models of the entire insulin signalling network will enable us to identify the critical nodes that control GLUT4 traffic and decipher emergent properties of the system that are not currently apparent.


Assuntos
Transportador de Glucose Tipo 4/metabolismo , Insulina/metabolismo , Transdução de Sinais/fisiologia , Tecido Adiposo/metabolismo , Animais , Membrana Celular/metabolismo , Endocitose/fisiologia , Ativação Enzimática , Glucose/metabolismo , Isoenzimas/metabolismo , Fusão de Membrana , Músculo Esquelético/metabolismo , Transporte Proteico/fisiologia , Proteômica , Proteínas Proto-Oncogênicas c-akt/metabolismo
4.
Mol Cell Proteomics ; 9(4): 682-94, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20051463

RESUMO

Insulin plays an essential role in metabolic homeostasis in mammals, and many of the underlying biochemical pathways are regulated via the canonical phosphatidylinositol 3-kinase/AKT pathway. To identify novel metabolic actions of insulin, we conducted a quantitative proteomics analysis of insulin-regulated 14-3-3-binding proteins in muscle cells. These studies revealed a novel role for insulin in the post-transcriptional regulation of mRNA expression. EDC3, a component of the mRNA decay and translation repression pathway associated with mRNA processing bodies, was shown to be phosphorylated by AKT downstream of insulin signaling. The major insulin-regulated site was mapped to Ser-161, and phosphorylation at this site led to increased 14-3-3 binding. Functional studies indicated that induction of 14-3-3 binding to EDC3 causes morphological changes in processing body structures, inhibition of microRNA-mediated mRNA post-transcriptional regulation, and alterations in the protein- protein interactions of EDC3. These data highlight an important new arm of the insulin signaling cascade in the regulation of mRNA utilization.


Assuntos
Proteínas 14-3-3/fisiologia , Proteína Oncogênica v-akt/fisiologia , Fosfoproteínas/análise , Proteômica/métodos , Proteínas 14-3-3/isolamento & purificação , Proteínas 14-3-3/metabolismo , Animais , Sítios de Ligação , Células CHO , Células Cultivadas , Cricetinae , Cricetulus , Regulação da Expressão Gênica , Humanos , Camundongos , MicroRNAs/farmacologia , MicroRNAs/fisiologia , Células NIH 3T3 , Proteína Oncogênica v-akt/isolamento & purificação , Proteína Oncogênica v-akt/metabolismo , Fosforilação , Mapeamento de Interação de Proteínas , Interferência de RNA , Estabilidade de RNA/fisiologia , Ribonucleoproteínas Nucleares Pequenas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...