Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Biomater Sci Eng ; 10(4): 2212-2223, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38467019

RESUMO

Macrophages are innate immune cells that interact with complex extracellular matrix environments, which have varied stiffness, composition, and structure, and such interactions can lead to the modulation of cellular activity. Collagen is often used in the culture of immune cells, but the effects of substrate functionalization conditions are not typically considered. Here, we show that the solvent system used to attach collagen onto a hydrogel surface affects its surface distribution and organization, and this can modulate the responses of macrophages subsequently cultured on these surfaces in terms of their inflammatory activation and expression of adhesion and mechanosensitive molecules. Collagen was solubilized in either acetic acid (Col-AA) or N-(2-hydroxyethyl)piperazine-N'-ethanesulfonic acid (HEPES) (Col-HEP) solutions and conjugated onto soft and stiff polyacrylamide (PA) hydrogel surfaces. Bone marrow-derived macrophages cultured under standard conditions (pH 7.4) on the Col-HEP-derived surfaces exhibited stiffness-dependent inflammatory activation; in contrast, the macrophages cultured on Col-AA-derived surfaces expressed high levels of inflammatory cytokines and genes, irrespective of the hydrogel stiffness. Among the collagen receptors that were examined, leukocyte-associated immunoglobulin-like receptor-1 (LAIR-1) was the most highly expressed, and knockdown of the Lair-1 gene enhanced the secretion of inflammatory cytokines. We found that the collagen distribution was more homogeneous on Col-AA surfaces but formed aggregates on Col-HEP surfaces. The macrophages cultured on Col-AA PA hydrogels were more evenly spread, expressed higher levels of vinculin, and exerted higher traction forces compared to those of cells on Col-HEP. These macrophages on Col-AA also had higher nuclear-to-cytoplasmic ratios of yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ), key molecules that control inflammation and sense substrate stiffness. Our results highlight that seemingly slight variations in substrate deposition for immunobiology studies can alter critical immune responses, and this is important to elucidate in the broader context of immunomodulatory biomaterial design.


Assuntos
Colágeno , Matriz Extracelular , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Macrófagos/metabolismo , Fatores de Transcrição/metabolismo , Hidrogéis/metabolismo , Citocinas/metabolismo
2.
Artigo em Inglês | MEDLINE | ID: mdl-32719788

RESUMO

The interaction between collagen/collagen-like peptides and the commonly expressed immune cell receptor LAIR-1 (leukocyte-associated immunoglobulin-like receptor-1) regulates and directs immune responses throughout the body. Understanding and designing these interactions within the context of biomaterials could advance the development of materials used in medical applications. In this study, we investigate the immunomodulatory effects of biomaterials engineered to display a human collagen III-derived ligand peptide (LAIR1-LP) that targets LAIR-1. Specifically, we examine the effects of LAIR1-LP functionalized surfaces on uptake of polymeric particles and cell debris by macrophages polarized toward inflammatory or healing phenotypes. We observed that culture of macrophages on LAIR1-LP functionalized surfaces increased their uptake of PLGA micro- and nano-particles, as well as apoptotic fibroblasts, while reducing their secretion of TNFα in response to LPS/IFNγ pro-inflammatory stimulation, when compared to cells seeded on control surfaces. To investigate the role of LAIR-1 in the observed LAIR1-LP-induced effects, we used siRNA to knock down LAIR-1 expression and found that cells lacking LAIR-1 exhibited enhanced particle uptake on LAIR1-LP and control surfaces. Furthermore, analysis of gene expression showed that LAIR-1 knockdown led to increase expression of other receptors involved in cell uptake, including CD-36, SRA-1, and beta-2 integrin. Together, our study suggests that LAIR1-LP enhances macrophage uptake potentially through interactions with collagen-domain binding surface receptors, and inhibits inflammation through interaction with LAIR-1.

3.
Adv Healthc Mater ; 8(8): e1801578, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30714328

RESUMO

The extracellular matrix (ECM) is a complex and dynamic structural scaffold for cells within tissues and plays an important role in regulating cell function. Recently it has become appreciated that the ECM contains bioactive motifs that can directly modulate immune responses. This review describes strategies for engineering immunomodulatory biomaterials that utilize natural ECM-derived molecules and have the potential to harness the immune system for applications ranging from tissue regeneration to drug delivery. A top-down approach utilizes full-length ECM proteins, including collagen, fibrin, or hyaluronic acid-based materials, as well as matrices derived from decellularized tissue. These materials have the benefit of maintaining natural conformation and structure but are often heterogeneous and encumber precise control. By contrast, a bottom-up approach leverages immunomodulatory domains, such as Arg-Gly-Asp (RGD), matrix metalloproteinase (MMP)-sensitive peptides, or leukocyte-associated immunoglobulin-like receptor-1(LAIR-1) ligands, by incorporating them into synthetic materials. These materials have tunable control over immune cell functions and allow for combinatorial approaches. However, the synthetic approach lacks the full natural context of the original ECM protein. These two approaches provide a broad range of engineering techniques for immunomodulation through material interactions and hold the potential for the development of future therapeutic applications.


Assuntos
Materiais Biocompatíveis , Matriz Extracelular , Imunomodulação , Engenharia Tecidual , Animais , Linhagem Celular , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Humanos , Camundongos
4.
ACS Synth Biol ; 7(12): 2758-2764, 2018 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-30433765

RESUMO

The Ehrlich pathway is a major route for the renewable production of higher alcohols. However, the product scope of the Ehrlich pathway is restricted, and the product selectivity is suboptimal. Here, we demonstrate that a Coenzyme A (CoA) detour, which involves conversion of the 2-keto acids into acyl-CoAs, expands the biological toolkit of reaction chemistries available in the Ehrlich pathway to include the gamut of CoA-dependent enzymes. As a proof-of-concept, we demonstrated the first biosynthesis of a tertiary branched-alcohol, pivalcohol, at a level of ∼10 mg/L from glucose in Escherichia coli, using a pivalyl-CoA mutase from Xanthobacter autotrophicus. Furthermore, engineering an enzyme in the CoA detour, the Lactobacillus brevis CoA-acylating aldehyde dehydrogenase, allowed stringent product selectivity. Targeted production of 3-methyl-1-butanol (3-MB) in E. coli mediated by the CoA detour showed a 3-MB:side-product (isobutanol) ratio of >20, an increase over the ratios previously achieved using the conventional Ehrlich pathway.


Assuntos
Coenzima A/metabolismo , Engenharia Metabólica/métodos , Pentanóis/metabolismo , Aldeído Desidrogenase/genética , Aldeído Desidrogenase/metabolismo , Escherichia coli/metabolismo , Transferases Intramoleculares/genética , Transferases Intramoleculares/metabolismo , Levilactobacillus brevis/enzimologia , Pentanóis/química , Plasmídeos/genética , Plasmídeos/metabolismo , Xanthobacter/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...