Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 56(47): 6360-6363, 2020 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-32390026

RESUMO

The permanent colouration of a polyester by straightforward azo coupling is disclosed. Uniquely, the chromophore is created only upon successful polymer modification with a non-coloured molecule (in situ colouration), which confirms successful polymer adaptation and ensures that coloured waste is not produced. The method of colouration, which may feasibly be applied for the coloration of a wide-range of step-growth polyesters, yielded a polymer capable of preventing indigo deposition onto a range of fabrics, offering potential use within advanced detergent formulations.


Assuntos
Compostos Azo/química , Cor , Poliésteres/química , Estrutura Molecular
2.
Chemistry ; 26(59): 13352-13358, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-32330327

RESUMO

The dual stimuli-controlled release of doxorubicin from gel-embedded nanoparticles is reported. Non-cytotoxic polymer nanoparticles are formed from poly(ethylene glycol)-b-poly(benzyl glutamate) that, uniquely, contain a central ester link. This connection renders the nanoparticles pH-responsive, enabling extensive doxorubicin release in acidic solutions (pH 6.5), but not in solutions of physiological pH (pH 7.4). Doxorubicin-loaded nanoparticles were found to be stable for at least 31 days and lethal against the three breast cancer cell lines tested. Furthermore, doxorubicin-loaded nanoparticles could be incorporated within a thermoresponsive poly(2-hydroxypropyl methacrylate) gel depot, which forms immediately upon injection of poly(2-hydroxypropyl methacrylate) in dimethyl sulfoxide solution into aqueous solution. The combination of the poly(2-hydroxypropyl methacrylate) gel and poly(ethylene glycol)-b-poly(benzyl glutamate) nanoparticles yields an injectable doxorubicin delivery system that facilities near-complete drug release when maintained at elevated temperatures (37 °C) in acidic solution (pH 6.5). In contrast, negligible payload release occurs when the material is stored at room temperature in non-acidic solution (pH 7.4). The system has great potential as a vehicle for the prolonged, site-specific release of chemotherapeutics.


Assuntos
Doxorrubicina , Nanopartículas , Polímeros/química , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Humanos , Concentração de Íons de Hidrogênio , Injeções
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...