Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 112022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35924897

RESUMO

Protein phosphatase 2A (PP2A) holoenzymes target broad substrates by recognizing short motifs via regulatory subunits. PP2A methylesterase 1 (PME-1) is a cancer-promoting enzyme and undergoes methylesterase activation upon binding to the PP2A core enzyme. Here, we showed that PME-1 readily demethylates different families of PP2A holoenzymes and blocks substrate recognition in vitro. The high-resolution cryoelectron microscopy structure of a PP2A-B56 holoenzyme-PME-1 complex reveals that PME-1 disordered regions, including a substrate-mimicking motif, tether to the B56 regulatory subunit at remote sites. They occupy the holoenzyme substrate-binding groove and allow large structural shifts in both holoenzyme and PME-1 to enable multipartite contacts at structured cores to activate the methylesterase. B56 interface mutations selectively block PME-1 activity toward PP2A-B56 holoenzymes and affect the methylation of a fraction of total cellular PP2A. The B56 interface mutations allow us to uncover B56-specific PME-1 functions in p53 signaling. Our studies reveal multiple mechanisms of PME-1 in suppressing holoenzyme functions and versatile PME-1 activities derived from coupling substrate-mimicking motifs to dynamic structured cores.


Assuntos
Proteína Fosfatase 2 , Microscopia Crioeletrônica , Desmetilação , Holoenzimas/metabolismo , Metilação , Proteína Fosfatase 2/metabolismo
2.
Nat Commun ; 9(1): 3830, 2018 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-30224630

RESUMO

In the original version of this Article, the title of the legend to Fig. 7 incorrectly read 'Knockdown of B55α increases breast cancer metastasis' instead of 'Knockdown of B55α decreases breast cancer metastasis'. This has now been corrected in both the PDF and HTML versions of the Article.

3.
Nat Commun ; 9(1): 1047, 2018 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-29535359

RESUMO

Eya genes encode a unique family of multifunctional proteins that serve as transcriptional co-activators and as haloacid dehalogenase-family Tyr phosphatases. Intriguingly, the N-terminal domain of Eyas, which does not share sequence similarity to any known phosphatases, contains a separable Ser/Thr phosphatase activity. Here, we demonstrate that the Ser/Thr phosphatase activity of Eya is not intrinsic, but arises from its direct interaction with the protein phosphatase 2A (PP2A)-B55α holoenzyme. Importantly, Eya3 alters the regulation of c-Myc by PP2A, increasing c-Myc stability by enabling PP2A-B55α to dephosphorylate pT58, in direct contrast to the previously described PP2A-B56α-mediated dephosphorylation of pS62 and c-Myc destabilization. Furthermore, Eya3 and PP2A-B55α promote metastasis in a xenograft model of breast cancer, opposing the canonical tumor suppressive function of PP2A-B56α. Our study identifies Eya3 as a regulator of PP2A, a major cellular Ser/Thr phosphatase, and uncovers a mechanism of controlling the stability of a critical oncogene, c-Myc.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteína Fosfatase 2/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Animais , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Células HEK293 , Humanos , Imuno-Histoquímica , Espectrometria de Massas , Camundongos , Fosforilação , Ligação Proteica , Proteína Fosfatase 2/genética , Estabilidade Proteica , Proteínas Tirosina Fosfatases/genética , Proteínas Proto-Oncogênicas c-myc/genética
4.
Nat Commun ; 8(1): 2272, 2017 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-29273778

RESUMO

Dynamic assembly/disassembly of signaling complexes are crucial for cellular functions. Specialized latency and activation chaperones control the biogenesis of protein phosphatase 2A (PP2A) holoenzymes that contain a common scaffold and catalytic subunits and a variable regulatory subunit. Here we show that the butterfly-shaped TIPRL (TOR signaling pathway regulator) makes highly integrative multibranching contacts with the PP2A catalytic subunit, selective for the unmethylated tail and perturbing/inactivating the phosphatase active site. TIPRL also makes unusual wobble contacts with the scaffold subunit, allowing TIPRL, but not the overlapping regulatory subunits, to tolerate disease-associated PP2A mutations, resulting in reduced holoenzyme assembly and enhanced inactivation of mutant PP2A. Strikingly, TIPRL and the latency chaperone, α4, coordinate to disassemble active holoenzymes into latent PP2A, strictly controlled by methylation. Our study reveals a mechanism for methylation-responsive inactivation and holoenzyme disassembly, illustrating the complexity of regulation/signaling, dynamic complex disassembly, and disease mutations in cancer and intellectual disability.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteína Fosfatase 2/metabolismo , Animais , Domínio Catalítico , Cristalização , Células HEK293 , Holoenzimas , Humanos , Metilação , Camundongos , Chaperonas Moleculares , Transdução de Sinais
5.
Cell Discov ; 3: 17027, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28884018

RESUMO

Protein phosphatase 2A (PP2A) is a major Ser/Thr phosphatase; it forms diverse heterotrimeric holoenzymes that counteract kinase actions. Using a peptidome that tiles the disordered regions of the human proteome, we identified proteins containing [LMFI]xx[ILV]xEx motifs that serve as interaction sites for B'-family PP2A regulatory subunits and holoenzymes. The B'-binding motifs have important roles in substrate recognition and in competitive inhibition of substrate binding. With more than 100 novel ligands identified, we confirmed that the recently identified LxxIxEx B'α-binding motifs serve as common binding sites for B' subunits with minor variations, and that S/T phosphorylation or D/E residues at positions 2, 7, 8 and 9 of the motifs reinforce interactions. Hundreds of proteins in the human proteome harbor intrinsic or phosphorylation-responsive B'-interaction motifs, and localize at distinct cellular organelles, such as midbody, predicting kinase-facilitated recruitment of PP2A-B' holoenzymes for tight spatiotemporal control of phosphorylation at mitosis and cytokinesis. Moroever, Polo-like kinase 1-mediated phosphorylation of Cyk4/RACGAP1, a centralspindlin component at the midbody, facilitates binding of both RhoA guanine nucleotide exchange factor (epithelial cell transforming sequence 2 (Ect2)) and PP2A-B' that in turn dephosphorylates Cyk4 and disrupts Ect2 binding. This feedback signaling loop precisely controls RhoA activation and specifies a restricted region for cleavage furrow ingression. Our results provide a framework for further investigation of diverse signaling circuits formed by PP2A-B' holoenzymes in various cellular processes.

6.
ACS Infect Dis ; 2(1): 47-53, 2016 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-27622947

RESUMO

During cell entry of an enveloped virus, the viral membrane must be fused with the cellular membrane. The virus envelope has a unique structure consisting of viral proteins and a virus-specific lipid composition, whereas the host membrane has its own structure with host membrane proteins. Compound 136 was previously found to bind in close proximity to the viral envelope and inhibit influenza virus entry. We showed here that the 136-treated influenza virus still caused hemolysis. When liposomes were used as the target membrane for 136-treated viruses, aberrant fusion occurred; few liposomes fused per virion, and glycoproteins were not distributed evenly across fusion complexes. Additionally, large fusion aggregates did not form, and in some instances, neck-like structures were found. Based on previous results and hemolysis, fusion inhibition by 136 occurs post-scission but prior to lipid mixing.


Assuntos
Antivirais/farmacologia , Vírus da Influenza A/efeitos dos fármacos , Vírus da Influenza A/metabolismo , Inibidores de Proteínas Virais de Fusão/farmacologia , Proteínas Virais de Fusão/antagonistas & inibidores , Internalização do Vírus/efeitos dos fármacos , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Hemólise/efeitos dos fármacos , Humanos , Lipossomos/metabolismo , Proteínas Virais de Fusão/química , Proteínas Virais de Fusão/metabolismo
7.
PLoS One ; 10(3): e0122536, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25803288

RESUMO

New inhibitors of influenza viruses are needed to combat the potential emergence of novel human influenza viruses. We have identified a class of small molecules that inhibit replication of influenza virus at picomolar concentrations in plaque reduction assays. The compound also inhibits replication of vesicular stomatitis virus. Time of addition and dilution experiments with influenza virus indicated that an early time point of infection was blocked and that inhibitor 136 tightly bound to virions. Using fluorescently labeled influenza virus, inhibition of viral fusion to cellular membranes by blocked lipid mixing was established as the mechanism of action for this class of inhibitors. Stabilization of the neutral pH form of hemagglutinin (HA) was ruled out by trypsin digestion studies in vitro and with conformation specific HA antibodies within cells. Direct visualization of 136 treated influenza virions at pH 7.5 or acidified to pH 5.0 showed that virions remain intact and that glycoproteins become disorganized as expected when HA undergoes a conformational change. This suggests that exposure of the fusion peptide at low pH is not inhibited but lipid mixing is inhibited, a different mechanism than previously reported fusion inhibitors. We hypothesize that this new class of inhibitors intercalate into the virus envelope altering the structure of the viral envelope required for fusion to cellular membranes.


Assuntos
Vírus da Influenza A Subtipo H3N2 , Norbornanos/farmacologia , Tiazolidinas/farmacologia , Inibidores de Proteínas Virais de Fusão/farmacologia , Vírion/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos , Animais , Cães , Eletroforese em Gel de Poliacrilamida , Fluorescência , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Células Madin Darby de Rim Canino , Microscopia Eletrônica , Norbornanos/metabolismo , Sais de Tetrazólio , Tiazóis , Tiazolidinas/metabolismo , Tripsina , Ensaio de Placa Viral , Vírion/ultraestrutura
8.
J Virol ; 88(7): 3766-75, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24429372

RESUMO

UNLABELLED: The nucleocapsid of a negative-strand RNA virus is assembled with a single nucleocapsid protein and the viral genomic RNA. The nucleocapsid protein polymerizes along the length of the single-strand genomic RNA (viral RNA) or its cRNA. This process of encapsidation occurs concomitantly with genomic replication. Structural comparisons of several nucleocapsid-like particles show that the mechanism of RNA encapsidation in negative-strand RNA viruses has many common features. Fundamentally, there is a unifying mechanism to keep the capsid protein protomer monomeric prior to encapsidation of viral RNA. In the nucleocapsid, there is a cavity between two globular domains of the nucleocapsid protein where the viral RNA is sequestered. The viral RNA must be transiently released from the nucleocapsid in order to reveal the template RNA sequence for transcription/replication. There are cross-molecular interactions among the protein subunits linearly along the nucleocapsid to stabilize its structure. Empty capsids can form in the absence of RNA. The common characteristics of RNA encapsidation not only delineate the evolutionary relationship of negative-strand RNA viruses but also provide insights into their mechanism of replication. IMPORTANCE: What separates negative-strand RNA viruses (NSVs) from the rest of the virosphere is that the nucleocapsid of NSVs serves as the template for viral RNA synthesis. Their viral RNA-dependent RNA polymerase can induce local conformational changes in the nucleocapsid to temporarily release the RNA genome so that the viral RNA-dependent RNA polymerase can use it as the template for RNA synthesis during both transcription and replication. After RNA synthesis at the local region is completed, the viral RNA-dependent RNA polymerase processes downstream, and the RNA genome is restored in the nucleocapsid. We found that the nucleocapsid assembly of all NSVs shares three essential elements: a monomeric capsid protein protomer, parallel orientation of subunits in the linear nucleocapsid, and a (5H + 3H) motif that forms a proper cavity for sequestration of the RNA. This observation also suggests that all NSVs evolved from a common ancestor that has this unique nucleocapsid.


Assuntos
Vírus de RNA/fisiologia , Montagem de Vírus , Modelos Moleculares , Nucleocapsídeo/química , Nucleocapsídeo/metabolismo , Conformação Proteica , Multimerização Proteica , RNA Viral/metabolismo , Replicação Viral
9.
J Virol ; 85(6): 2714-22, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21177817

RESUMO

The genomic RNA of negative-strand RNA viruses, such as vesicular stomatitis virus (VSV), is completely enwrapped by the nucleocapsid protein (N) in every stage of virus infection. During viral transcription/replication, however, the genomic RNA in the nucleocapsid must be accessible by the virus-encoded RNA-dependent RNA polymerase in order to serve as the template for RNA synthesis. With the VSV nucleocapsid and a nucleocapsid-like particle (NLP) produced in Escherichia coli, we have found that the RNA in the VSV nucleocapsid can be removed by RNase A, in contrast to what was previously reported. Removal of the RNA did not disrupt the assembly of the N protein, resulting in an empty capsid. Polyribonucleotides were reencapsidated into the empty NLP, and the crystal structures were determined. The crystal structures revealed variable degrees of association of the N protein with a specific RNA sequence.


Assuntos
Nucleocapsídeo/fisiologia , RNA Viral/metabolismo , Vesiculovirus/fisiologia , Escherichia coli , Proteínas do Nucleocapsídeo/metabolismo , Ligação Proteica , Proteínas Recombinantes/metabolismo , Ribonuclease Pancreático/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...