Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(22): eadj1431, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38809979

RESUMO

Infusion of 13C-labeled metabolites provides a gold standard for understanding the metabolic processes used by T cells during immune responses in vivo. Through infusion of 13C-labeled metabolites (glucose, glutamine, and acetate) in Listeria monocytogenes-infected mice, we demonstrate that CD8 T effector (Teff) cells use metabolites for specific pathways during specific phases of activation. Highly proliferative early Teff cells in vivo shunt glucose primarily toward nucleotide synthesis and leverage glutamine anaplerosis in the tricarboxylic acid (TCA) cycle to support adenosine triphosphate and de novo pyrimidine synthesis. In addition, early Teff cells rely on glutamic-oxaloacetic transaminase 1 (Got1)-which regulates de novo aspartate synthesis-for effector cell expansion in vivo. CD8 Teff cells change fuel preference over the course of infection, switching from glutamine- to acetate-dependent TCA cycle metabolism late in infection. This study provides insights into the dynamics of Teff metabolism, illuminating distinct pathways of fuel consumption associated with CD8 Teff cell function in vivo.


Assuntos
Acetatos , Linfócitos T CD8-Positivos , Isótopos de Carbono , Glutamina , Glutamina/metabolismo , Animais , Linfócitos T CD8-Positivos/metabolismo , Acetatos/metabolismo , Camundongos , Listeriose/metabolismo , Listeriose/imunologia , Listeriose/microbiologia , Listeria monocytogenes , Ciclo do Ácido Cítrico , Glucose/metabolismo , Camundongos Endogâmicos C57BL
2.
Nat Commun ; 15(1): 4096, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750019

RESUMO

The presence of heterogeneity in responses to oncolytic virotherapy poses a barrier to clinical effectiveness, as resistance to this treatment can occur through the inhibition of viral spread within the tumor, potentially leading to treatment failures. Here we show that 4-octyl itaconate (4-OI), a chemical derivative of the Krebs cycle-derived metabolite itaconate, enhances oncolytic virotherapy with VSVΔ51 in various models including human and murine resistant cancer cell lines, three-dimensional (3D) patient-derived colon tumoroids and organotypic brain tumor slices. Furthermore, 4-OI in combination with VSVΔ51 improves therapeutic outcomes in a resistant murine colon tumor model. Mechanistically, we find that 4-OI suppresses antiviral immunity in cancer cells through the modification of cysteine residues in MAVS and IKKß independently of the NRF2/KEAP1 axis. We propose that the combination of a metabolite-derived drug with an oncolytic virus agent can greatly improve anticancer therapeutic outcomes by direct interference with the type I IFN and NF-κB-mediated antiviral responses.


Assuntos
Terapia Viral Oncolítica , Vírus Oncolíticos , Succinatos , Animais , Humanos , Terapia Viral Oncolítica/métodos , Succinatos/farmacologia , Camundongos , Linhagem Celular Tumoral , Interferon Tipo I/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Neoplasias do Colo/terapia , Neoplasias do Colo/imunologia , Neoplasias do Colo/tratamento farmacológico , Antivirais/farmacologia , NF-kappa B/metabolismo , Quinase I-kappa B/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Inflamação/tratamento farmacológico , Feminino , Vírus da Estomatite Vesicular Indiana/fisiologia , Vírus da Estomatite Vesicular Indiana/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
3.
bioRxiv ; 2023 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-37333111

RESUMO

Infusion of 13C-labeled metabolites provides a gold-standard for understanding the metabolic processes used by T cells during immune responses in vivo. Through infusion of 13C-labeled metabolites (glucose, glutamine, acetate) in Listeria monocytogenes (Lm)-infected mice, we demonstrate that CD8+ T effector (Teff) cells utilize metabolites for specific pathways during specific phases of activation. Highly proliferative early Teff cells in vivo shunt glucose primarily towards nucleotide synthesis and leverage glutamine anaplerosis in the tricarboxylic acid (TCA) cycle to support ATP and de novo pyrimidine synthesis. Additionally, early Teff cells rely on glutamic-oxaloacetic transaminase 1 (Got1)-which regulates de novo aspartate synthesis-for effector cell expansion in vivo. Importantly, Teff cells change fuel preference over the course of infection, switching from glutamine- to acetate-dependent TCA cycle metabolism late in infection. This study provides insights into the dynamics of Teff metabolism, illuminating distinct pathways of fuel consumption associated with Teff cell function in vivo.

4.
Nat Commun ; 13(1): 1898, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35393414

RESUMO

Recent advances in cancer therapeutics clearly demonstrate the need for innovative multiplex therapies that attack the tumour on multiple fronts. Oncolytic or "cancer-killing" viruses (OVs) represent up-and-coming multi-mechanistic immunotherapeutic drugs for the treatment of cancer. In this study, we perform an in-vitro screen based on virus-encoded artificial microRNAs (amiRNAs) and find that a unique amiRNA, herein termed amiR-4, confers a replicative advantage to the VSVΔ51 OV platform. Target validation of amiR-4 reveals ARID1A, a protein involved in chromatin remodelling, as an important player in resistance to OV replication. Virus-directed targeting of ARID1A coupled with small-molecule inhibition of the methyltransferase EZH2 leads to the synthetic lethal killing of both infected and uninfected tumour cells. The bystander killing of uninfected cells is mediated by intercellular transfer of extracellular vesicles carrying amiR-4 cargo. Altogether, our findings establish that OVs can serve as replicating vehicles for amiRNA therapeutics with the potential for combination with small molecule and immune checkpoint inhibitor therapy.


Assuntos
Vesículas Extracelulares , MicroRNAs , Neoplasias , Terapia Viral Oncolítica , Vírus Oncolíticos , Humanos , MicroRNAs/genética , Neoplasias/terapia , Vírus Oncolíticos/genética
5.
Cell Rep ; 38(9): 110446, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35235777

RESUMO

The factors that promote T cell expansion are not fully known. Creatine is an abundant circulating metabolite that has recently been implicated in T cell function; however, its cell-autonomous role in immune-cell function is unknown. Here, we show that creatine supports cell-intrinsic CD8+ T cell homeostasis. We further identify creatine kinase B (CKB) as the creatine kinase isoenzyme that supports these T cell properties. Loss of the creatine transporter (Slc6a8) or Ckb results in compromised CD8+ T cell expansion in response to infection without influencing adenylate energy charge. Rather, loss of Slc6a8 or Ckb disrupts naive T cell homeostasis and weakens TCR-mediated activation of mechanistic target of rapamycin complex 1 (mTORC1) signaling required for CD8+ T cell expansion. These data demonstrate a cell-intrinsic role for creatine transport and creatine transphosphorylation, independent of their effects on global cellular energy charge, in supporting CD8+ T cell homeostasis and effector function.


Assuntos
Linfócitos T CD8-Positivos , Creatina , Creatina/metabolismo , Creatina Quinase/metabolismo , Fosforilação , Transdução de Sinais
6.
Sci Rep ; 10(1): 7838, 2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32398698

RESUMO

One-carbon metabolism fuels the high demand of cancer cells for nucleotides and other building blocks needed for increased proliferation. Although inhibitors of this pathway are widely used to treat many cancers, their global impact on anabolic and catabolic processes remains unclear. Using a combination of real-time bioenergetics assays and metabolomics approaches, we investigated the global effects of methotrexate on cellular metabolism. We show that methotrexate treatment increases the intracellular concentration of the metabolite AICAR, resulting in AMPK activation. Methotrexate-induced AMPK activation leads to decreased one-carbon metabolism gene expression and cellular proliferation as well as increased global bioenergetic capacity. The anti-proliferative and pro-respiratory effects of methotrexate are AMPK-dependent, as cells with reduced AMPK activity are less affected by methotrexate treatment. Conversely, the combination of methotrexate with the AMPK activator, phenformin, potentiates its anti-proliferative activity in cancer cells. These data highlight a reciprocal effect of methotrexate on anabolic and catabolic processes and implicate AMPK activation as a metabolic determinant of methotrexate response.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Antineoplásicos/farmacologia , Metotrexato/farmacologia , Transdução de Sinais/efeitos dos fármacos , Biguanidas/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Respiração Celular/efeitos dos fármacos , Sinergismo Farmacológico , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia
7.
Cell Rep ; 31(5): 107585, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32375032

RESUMO

Dendritic cells, cells of the innate immune system, are found in a steady state poised to respond to activating stimuli. Once stimulated, they rapidly undergo dynamic changes in gene expression to adopt an activated phenotype capable of stimulating immune responses. We find that the microRNA miR-9 is upregulated in both bone marrow-derived DCs and conventional DC1s but not in conventional DC2s following stimulation. miR-9 expression in BMDCs and conventional DC1s promotes enhanced DC activation and function, including the ability to stimulate T cell activation and control tumor growth. We find that miR-9 regulated the expression of several negative regulators of transcription, including the transcriptional repressor Polycomb group factor 6 (Pcgf6). These findings demonstrate that miR-9 facilitates the transition of DCs from steady state to mature state by regulating the expression of several negative regulators of DC function in a cell-type-specific manner.


Assuntos
Diferenciação Celular/genética , Células Dendríticas/metabolismo , Ativação Linfocitária/genética , MicroRNAs/genética , Diferenciação Celular/imunologia , Células Dendríticas/imunologia , Humanos , MicroRNAs/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação para Cima
8.
Biochem Biophys Res Commun ; 526(3): 641-646, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32248971

RESUMO

Oncolytic viruses (OVs) are a class of biotherapeutics that are currently being explored for the treatment of cancer. While showing promise in several pre-clinical and clinical studies, systemic delivery of these anti-cancer agents is hampered by inefficient tumor targeting and a host immune system that is highly evolved to detect and neutralize pathogens. To shield the virus from immune recognition and destruction, the use of cells as delivery vehicles has been explored for the systemic delivery of OVs. Though several types of cell carriers are able to protect OVs during intravenous delivery, many still lack the ability to specifically home to or accumulate within the tumor microenvironment. Overall, OV-based therapeutics could benefit from tumor targeting strategies to maximize tumor-specific delivery and minimize infection of off-target tissues. In the current study, we examine magnetic targeting as a strategy to improve OV infection of tumor cells in vitro. We found that magnetic targeting of magnetically-labeled VSV particles or VSV-infected cell carriers resulted in increased infection and killing of tumor cells. Furthermore, this enhanced infection of target tumor cells was observed even in the presence of virus-specific neutralizing antibodies. Overall, our findings suggest that magnetic targeting strategies can improve the infection of tumor cells and may be a viable strategy to improve the tumor-targeted delivery of oncolytic VSV-based therapeutics.


Assuntos
Sistemas de Liberação de Medicamentos , Magnetismo , Neoplasias/terapia , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/fisiologia , Animais , Anticorpos Neutralizantes/imunologia , Linhagem Celular , Drosophila/citologia , Sistemas de Liberação de Medicamentos/métodos , Fenômenos Magnéticos , Magnetismo/métodos , Camundongos , Neoplasias/imunologia , Vírus Oncolíticos/imunologia
9.
Cell Metab ; 31(2): 250-266.e9, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-32023446

RESUMO

Epigenetic modifications on DNA and histones regulate gene expression by modulating chromatin accessibility to transcription machinery. Here we identify methionine as a key nutrient affecting epigenetic reprogramming in CD4+ T helper (Th) cells. Using metabolomics, we showed that methionine is rapidly taken up by activated T cells and serves as the major substrate for biosynthesis of the universal methyl donor S-adenosyl-L-methionine (SAM). Methionine was required to maintain intracellular SAM pools in T cells. Methionine restriction reduced histone H3K4 methylation (H3K4me3) at the promoter regions of key genes involved in Th17 cell proliferation and cytokine production. Applied to the mouse model of multiple sclerosis (experimental autoimmune encephalomyelitis), dietary methionine restriction reduced the expansion of pathogenic Th17 cells in vivo, leading to reduced T cell-mediated neuroinflammation and disease onset. Our data identify methionine as a key nutritional factor shaping Th cell proliferation and function in part through regulation of histone methylation.


Assuntos
Encefalomielite Autoimune Experimental , Epigênese Genética/efeitos dos fármacos , Histonas/metabolismo , Metionina , Esclerose Múltipla , Células Th17/metabolismo , Animais , Proliferação de Células , Citocinas/metabolismo , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/metabolismo , Células HEK293 , Humanos , Metionina/metabolismo , Metionina/farmacologia , Metilação , Camundongos Endogâmicos C57BL , Camundongos Knockout , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/metabolismo , Células Th17/citologia
10.
J Biol Chem ; 294(51): 19785-19794, 2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31694919

RESUMO

Upon immune recognition of viruses, the mammalian innate immune response activates a complex signal transduction network to combat infection. This activation requires phosphorylation of key transcription factors regulating IFN production and signaling, including IFN regulatory factor 3 (IRF3) and STAT1. The mechanisms regulating these STAT1 and IRF3 phosphorylation events remain unclear. Here, using human and mouse cell lines along with gene microarrays, quantitative RT-PCR, viral infection and plaque assays, and reporter gene assays, we demonstrate that a microRNA cluster conserved among bilaterian animals, encoding miR-96, miR-182, and miR-183, regulates IFN signaling. In particular, we observed that the miR-183 cluster promotes IFN production and signaling, mediated by enhancing IRF3 and STAT1 phosphorylation. We also found that the miR-183 cluster activates the IFN pathway and inhibits vesicular stomatitis virus infection by directly targeting several negative regulators of IRF3 and STAT1 activities, including protein phosphatase 2A (PPP2CA) and tripartite motif-containing 27 (TRIM27). Overall, our work reveals an important role of the evolutionarily conserved miR-183 cluster in the regulation of mammalian innate immunity.


Assuntos
Imunidade Inata , Fator Regulador 3 de Interferon/metabolismo , MicroRNAs/metabolismo , Família Multigênica , Fator de Transcrição STAT1/metabolismo , Células A549 , Animais , Fibroblastos/imunologia , Fibroblastos/virologia , Genes Reporter , Células HEK293 , Células Hep G2 , Humanos , Interferons/imunologia , Células MCF-7 , Macrófagos/imunologia , Macrófagos/virologia , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Fosforilação , Transdução de Sinais , Replicação Viral
11.
Immunity ; 51(5): 856-870.e5, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31747582

RESUMO

Naive CD8+ T cells differentiating into effector T cells increase glucose uptake and shift from quiescent to anabolic metabolism. Although much is known about the metabolism of cultured T cells, how T cells use nutrients during immune responses in vivo is less well defined. Here, we combined bioenergetic profiling and 13C-glucose infusion techniques to investigate the metabolism of CD8+ T cells responding to Listeria infection. In contrast to in vitro-activated T cells, which display hallmarks of Warburg metabolism, physiologically activated CD8+ T cells displayed greater rates of oxidative metabolism, higher bioenergetic capacity, differential use of pyruvate, and prominent flow of 13C-glucose carbon to anabolic pathways, including nucleotide and serine biosynthesis. Glucose-dependent serine biosynthesis mediated by the enzyme Phgdh was essential for CD8+ T cell expansion in vivo. Our data highlight fundamental differences in glucose use by pathogen-specific T cells in vivo, illustrating the impact of environment on T cell metabolic phenotypes.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Metabolismo Energético , Glucose/metabolismo , Ativação Linfocitária/imunologia , Metaboloma , Metabolômica , Animais , Proliferação de Células , Cromatografia Gasosa-Espectrometria de Massas , Glicólise , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Ativação Linfocitária/genética , Metabolômica/métodos , Camundongos , Estresse Oxidativo , Viroses/genética , Viroses/imunologia , Viroses/metabolismo , Viroses/virologia
12.
Sci Rep ; 9(1): 1865, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30755678

RESUMO

The use of oncolytic viruses (OVs) for cancer treatment is emerging as a successful strategy that combines the direct, targeted killing of the cancer with the induction of a long-lasting anti-tumor immune response. Using multiple aggressive murine models of triple-negative breast cancer, we have recently demonstrated that the early administration of oncolytic Maraba virus (MRB) prior to surgical resection of the primary tumor is sufficient to minimize the metastatic burden, protect against tumor rechallenge, cure a fraction of the mice and sensitize refractory tumors to immune checkpoint blockade without the need for further treatment. Here, we apply our surgical model to other OVs: Vesicular stomatitis virus (VSV), Adenovirus (Ad), Reovirus (Reo) and Herpes simplex virus (HSV) and show that all of the tested OVs could positively change the outcome of the treated animals. The growth of the primary and secondary tumors was differently affected by the various OVs and most of the viruses conferred survival benefits in this neoadjuvant setting despite the absence of direct treatment following rechallenge. This study establishes that OV-therapy confers long-term protection when administered in the pre-operative window of opportunity.


Assuntos
Neoplasias Mamárias Experimentais/prevenção & controle , Terapia Neoadjuvante/métodos , Terapia Viral Oncolítica/métodos , Adenoviridae , Animais , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Chlorocebus aethiops , Modelos Animais de Doenças , Feminino , Células HEK293 , Humanos , Neoplasias Mamárias Experimentais/terapia , Camundongos , Camundongos Endogâmicos BALB C , Transplante de Neoplasias , Vírus Oncolíticos , Período Pré-Operatório , Reoviridae , Simplexvirus , Células Vero , Vesiculovirus
13.
Cancer Res ; 79(3): 445-451, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30573521

RESUMO

Memory CD8+ T cells (Tmem) are superior mediators of adoptive cell therapy (ACT) compared with effector CD8+ T cells (Teff) due to increased persistence in vivo. Underpinning Tmem survival is a shift in cellular metabolism away from aerobic glycolysis towards fatty acid oxidation (FAO). Here we investigated the impact of the peroxisome proliferator-activated receptor (PPAR) agonist GW501516 (GW), an agent known to boost FAO in other tissues, on CD8+ T-cell metabolism, function, and efficacy in a murine ACT model. Via activation of both PPARα and PPARδ/ß, GW treatment increased expression of carnitine palmitoyl transferase 1a, the rate-limiting enzyme of FAO, in activated CD8+ T cells. Using a metabolomics approach, we demonstrated that GW increased the abundance of multiple different acylcarnitines, consistent with enhanced FAO. T cells activated in the presence of GW and inflammatory signals, either mature dendritic cells or IL12, also demonstrated enhanced production of IFNγ and expression of T-bet. Despite high expression of T-bet, a characteristic of short-lived effector cells, GW-treated cells demonstrated enhanced persistence in vivo and superior efficacy in a model of ACT. Collectively, these data identify combined PPARα and PPARδ/ß agonists as attractive candidates for further studies and rapid translation into clinical trials of ACT. SIGNIFICANCE: Dual activation of peroxisome proliferator-activated receptors α and δ improves the efficacy of adoptive cell therapy by reprogramming T-cell metabolism and cytokine expression.


Assuntos
Imunoterapia Adotiva , Inflamação/genética , Neoplasias/genética , PPAR alfa/genética , PPAR delta/genética , Animais , Linfócitos T CD8-Positivos/imunologia , Ácidos Graxos/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Inflamação/imunologia , Inflamação/patologia , Inflamação/terapia , Interferon gama/genética , Interleucina-12/genética , Interleucina-12/imunologia , Metabolismo dos Lipídeos/genética , Camundongos , Neoplasias/imunologia , Neoplasias/patologia , Neoplasias/terapia , Oxirredução , PPAR alfa/agonistas , PPAR delta/agonistas , PPAR beta/agonistas , PPAR beta/genética , Tiazóis/uso terapêutico
14.
Cell Metab ; 28(3): 504-515.e7, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30043753

RESUMO

T cell subsets including effector (Teff), regulatory (Treg), and memory (Tmem) cells are characterized by distinct metabolic profiles that influence their differentiation and function. Previous research suggests that engagement of long-chain fatty acid oxidation (LC-FAO) supports Foxp3+ Treg cell and Tmem cell survival. However, evidence for this is mostly based on inhibition of Cpt1a, the rate-limiting enzyme for LC-FAO, with the drug etomoxir. Using genetic models to target Cpt1a specifically in T cells, we dissected the role of LC-FAO in primary, memory, and regulatory T cell responses. Here we show that the ACC2/Cpt1a axis is largely dispensable for Teff, Tmem, or Treg cell formation, and that the effects of etomoxir on T cell differentiation and function are independent of Cpt1a expression. Together our data argue that metabolic pathways other than LC-FAO fuel Tmem or Treg differentiation and suggest alternative mechanisms for the effects of etomoxir that involve mitochondrial respiration.


Assuntos
Acetil-CoA Carboxilase/fisiologia , Linfócitos T CD8-Positivos/metabolismo , Carnitina O-Palmitoiltransferase/fisiologia , Compostos de Epóxi/farmacologia , Ácidos Graxos/metabolismo , Memória Imunológica/efeitos dos fármacos , Mitocôndrias/metabolismo , Linfócitos T Reguladores/efeitos dos fármacos , Acetil-CoA Carboxilase/genética , Animais , Carnitina O-Palmitoiltransferase/genética , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Criança , Pré-Escolar , Feminino , Técnicas de Inativação de Genes , Humanos , Ativação Linfocitária/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxirredução/efeitos dos fármacos , Fosforilação Oxidativa/efeitos dos fármacos , Linfócitos T Reguladores/metabolismo
15.
Sci Immunol ; 3(23)2018 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-29752301

RESUMO

Mycobacterium tuberculosis (Mtb) is one of the most ancient human pathogens, yet the exact mechanism(s) of host defense against Mtb remains unclear. Although one-third of the world's population is chronically infected with Mtb, only 5 to 10% develop active disease. This indicates that, in addition to resistance mechanisms that control bacterial burden, the host has also evolved strategies to tolerate the presence of Mtb to limit disease severity. We identify mitochondrial cyclophilin D (CypD) as a critical checkpoint of T cell metabolism that controls the expansion of activated T cells. Although loss of CypD function in T cells led to enhanced Mtb antigen-specific T cell responses, this increased T cell response had no impact on bacterial burden. Rather, mice containing CypD-deficient T cells exhibited substantially compromised disease tolerance and succumbed to Mtb infection. This study establishes a mechanistic link between T cell-mediated immunity and disease tolerance during Mtb infection.


Assuntos
Ciclofilinas/imunologia , Mitocôndrias/imunologia , Linfócitos T/imunologia , Tuberculose Pulmonar/imunologia , Animais , Peptidil-Prolil Isomerase F , Ciclofilinas/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mycobacterium tuberculosis
16.
Sci Transl Med ; 10(422)2018 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-29298865

RESUMO

Triple-negative breast cancer (TNBC) is an aggressive disease for which treatment options are limited and associated with severe toxicities. Immunotherapeutic approaches like immune checkpoint inhibitors (ICIs) are a potential strategy, but clinical trials have demonstrated limited success in this patient cohort. Clinical studies using ICIs have revealed that patients with preexisting anticancer immunity are the most responsive. Given that oncolytic viruses (OVs) induce antitumor immunity, we investigated their use as an ICI-sensitizing approach. Using a therapeutic model that mimics the course of treatment for women with newly diagnosed TNBC, we demonstrate that early OV treatment coupled with surgical resection provides long-term benefits. OV therapy sensitizes otherwise refractory TNBC to immune checkpoint blockade, preventing relapse in most of the treated animals. We suggest that OV therapy in combination with immune checkpoint blockade warrants testing as a neoadjuvant treatment option in the window of opportunity between TNBC diagnosis and surgical resection.


Assuntos
Terapia Viral Oncolítica/métodos , Neoplasias de Mama Triplo Negativas/terapia , Feminino , Humanos , Terapia Neoadjuvante/métodos , Vírus Oncolíticos/fisiologia
17.
J Immunother ; 41(3): 125-129, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29293165

RESUMO

Anticancer vaccination is becoming a popular therapeutic approach for patients with cancers expressing common tumor antigens. One variation on this strategy is a heterologous virus vaccine where 2 viruses encoding the same tumor antigen are administered sequentially to prime and boost antitumor immunity. This approach is currently undergoing clinical investigation using an adenovirus (Ad) and the oncolytic virus Maraba (MRB). In this study, we show that Listeria monocytogenes can be used in place of the Ad to obtain comparable immune priming efficiency before MRB boosting. Importantly, the therapeutic benefits provided by our heterologous L. monocytogenes-MRB prime-boost strategy are superior to those conferred by the Ad-MRB combination. Our study provides proof of concept for the heterologous oncolytic bacteria-virus prime-boost approach for anticancer vaccination and merits its consideration for clinical testing.


Assuntos
Bactérias , Vacinas Anticâncer/imunologia , Imunização Secundária , Neoplasias/imunologia , Neoplasias/terapia , Vírus Oncolíticos , Adenoviridae/imunologia , Animais , Bactérias/genética , Bactérias/imunologia , Biomarcadores , Vacinas Anticâncer/administração & dosagem , Vacinas Anticâncer/genética , Linhagem Celular , Modelos Animais de Doenças , Humanos , Imunização , Imuno-Histoquímica , Listeria monocytogenes/imunologia , Melanoma Experimental , Camundongos , Neoplasias/patologia , Vírus Oncolíticos/genética , Vírus Oncolíticos/imunologia , Resultado do Tratamento , Carga Tumoral , Vacinação , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Biomedicines ; 5(1)2017 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-28536346

RESUMO

Vaccines have classically been used for disease prevention. Modern clinical vaccines are continuously being developed for both traditional use as well as for new applications. Typically thought of in terms of infectious disease control, vaccination approaches can alternatively be adapted as a cancer therapy. Vaccines targeting cancer antigens can be used to induce anti-tumour immunity and have demonstrated therapeutic efficacy both pre-clinically and clinically. Various approaches now exist and further establish the tremendous potential and adaptability of anti-cancer vaccination. Classical strategies include ex vivo-loaded immune cells, RNA- or DNA-based vaccines and tumour cell lysates. Recent oncolytic virus development has resulted in a surge of novel viruses engineered to induce powerful tumour-specific immune responses. In addition to their use as cancer vaccines, oncolytic viruses have the added benefit of being directly cytolytic to cancer cells and thus promote antigen recognition within a highly immune-stimulating tumour microenvironment. While oncolytic viruses are perfectly equipped for efficient immunization, this complicates their use upon previous exposure. Indeed, the host's anti-viral counter-attacks often impair multiple-dosing regimens. In this review we will focus on the use of oncolytic viruses for anti-tumour vaccination. We will explore different strategies as well as ways to circumvent some of their limitations.

19.
Breast Cancer Res ; 18(1): 83, 2016 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-27503504

RESUMO

BACKGROUND: Breast cancer is the most common malignant disease amongst Western women. The lack of treatment options for patients with chemotherapy-resistant or recurrent cancers is pushing the field toward the rapid development of novel therapies. The use of oncolytic viruses is a promising approach for the treatment of disseminated diseases like breast cancer, with the first candidate recently approved by the Food and Drug Administration for use in patients. In this report, we demonstrate the compatibility of oncolytic virotherapy and chemotherapy using various murine breast cancer models. This one-two punch has been explored in the past by several groups with different viruses and drugs and was shown to be a successful approach. Our strategy is to combine Paclitaxel, one of the most common drugs used to treat patients with breast cancer, and the oncolytic Rhabdovirus Maraba-MG1, a clinical trial candidate in a study currently recruiting patients with late-stage metastatic cancer. METHODS: We used the EMT6, 4 T1 and E0771 murine breast cancer models to evaluate in vitro and in vivo the effects of co-treatment with MG1 and Paclitaxel. Treatment-induced cytotoxicity was assessed and plaque assays, flow cytometry, microscopy and immunocytochemistry analysis were performed to quantify virus production and transgene expression. Orthotopically implanted tumors were measured during and after treatment to evaluate efficacy and Kaplan-Meier survival curves were generated. RESULTS: Our data demonstrate not only the compatibility of the treatments, but also their synergistic cytopathic activity. With Paclitaxel, EMT6 and 4 T1 tumors demonstrated increased virus production both in vitro and in vivo. Our results also show that Paclitaxel does not impair the safety profile of the virus treatment. Importantly, when combined, MG1 and the drug controlled tumor growth and prolonged survival. CONCLUSIONS: The combination of MG1 and Paclitaxel improved efficacy in all of the breast cancer models we tested and thus is a promising alternative approach for the treatment of patients with refractory breast cancer. Our strategy has potential for rapid translation to the clinic, given the current clinical status of both agents.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Neoplasias da Mama/terapia , Terapia Viral Oncolítica , Vírus Oncolíticos , Paclitaxel/uso terapêutico , Animais , Antineoplásicos Fitogênicos/administração & dosagem , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Terapia Combinada , Modelos Animais de Doenças , Feminino , Humanos , Interferon beta/farmacologia , Camundongos , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/genética , Paclitaxel/administração & dosagem , Carga Tumoral/efeitos dos fármacos , Replicação Viral , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Mol Ther Oncolytics ; 3: 16001, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27119116

RESUMO

Oncolytic viruses are known to stimulate the antitumor immune response by specifically replicating in tumor cells. This is believed to be an important aspect of the durable responses observed in some patients and the field is rapidly moving toward immunotherapy. As a further means to engage the immune system, we engineered a virus, vesicular stomatitis virus (VSV), to encode the proinflammatory cytokine interferon-γ. We used the 4T1 mammary adenocarcinoma as well as other murine tumor models to characterize immune responses in tumor-bearing animals generated by treatment with our viruses. The interferon-γ-encoding virus demonstrated greater activation of dendritic cells and drove a more profound secretion of proinflammatory cytokines compared to the parental virus. From a therapeutic point of view, the interferon-γ virus slowed tumor growth, minimized lung tumors, and prolonged survival in several murine tumor models. The improved efficacy was lost in immunocompromized animals; hence the mechanism appears to be T-cell-mediated. Taken together, these results demonstrate the ability of oncolytic viruses to act as immune stimulators to drive antitumor immunity as well as their potential for targeted gene therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...