Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3145, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605005

RESUMO

Naked mole-rats (NMRs) are best known for their extreme longevity and cancer resistance, suggesting that their immune system might have evolved to facilitate these phenotypes. Natural killer (NK) and T cells have evolved to detect and destroy cells infected with pathogens and to provide an early response to malignancies. While it is known that NMRs lack NK cells, likely lost during evolution, little is known about their T-cell subsets in terms of the evolution of the genes that regulate their function, their clonotypic diversity, and the thymus where they mature. Here we find, using single-cell transcriptomics, that NMRs have a large circulating population of γδT cells, which in mice and humans mostly reside in peripheral tissues and induce anti-cancer cytotoxicity. Using single-cell-T-cell-receptor sequencing, we find that a cytotoxic γδT-cell subset of NMRs harbors a dominant clonotype, and that their conventional CD8 αßT cells exhibit modest clonotypic diversity. Consistently, perinatal NMR thymuses are considerably smaller than those of mice yet follow similar involution progression. Our findings suggest that NMRs have evolved under a relaxed intracellular pathogenic selective pressure that may have allowed cancer resistance and longevity to become stronger targets of selection to which the immune system has responded by utilizing γδT cells.


Assuntos
Longevidade , Neoplasias , Humanos , Animais , Camundongos , Longevidade/fisiologia , Neoplasias/genética , Subpopulações de Linfócitos T , Células Matadoras Naturais , Ratos-Toupeira/fisiologia
2.
G3 (Bethesda) ; 10(9): 2911-2925, 2020 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-32631951

RESUMO

In recent years, improved sequencing technology and computational tools have made de novo genome assembly more accessible. Many approaches, however, generate either an unphased or only partially resolved representation of a diploid genome, in which polymorphisms are detected but not assigned to one or the other of the homologous chromosomes. Yet chromosomal phase information is invaluable for the understanding of phenotypic trait inheritance in the cases of compound heterozygosity, allele-specific expression or cis-acting variants. Here we use a combination of tools and sequencing technologies to generate a de novo diploid assembly of the human primary cell line WI-38. First, data from PacBio single molecule sequencing and Bionano Genomics optical mapping were combined to generate an unphased assembly. Next, 10x Genomics linked reads were combined with the hybrid assembly to generate a partially phased assembly. Lastly, we developed and optimized methods to use short-read (Illumina) sequencing of flow cytometry-sorted metaphase chromosomes to provide phase information. The final genome assembly was almost fully (94%) phased with the addition of approximately 2.5-fold coverage of Illumina data from the sequenced metaphase chromosomes. The diploid nature of the final de novo genome assembly improved the resolution of structural variants between the WI-38 genome and the human reference genome. The phased WI-38 sequence data are available for browsing and download at wi38.research.calicolabs.com. Our work shows that assembling a completely phased diploid genome de novo from the DNA of a single individual is now readily achievable.


Assuntos
Diploide , Genoma Humano , DNA , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Análise de Sequência de DNA
3.
Cell Syst ; 11(1): 95-101.e5, 2020 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-32592658

RESUMO

Single-cell RNA sequencing (scRNA-seq) measurements of gene expression enable an unprecedented high-resolution view into cellular state. However, current methods often result in two or more cells that share the same cell-identifying barcode; these "doublets" violate the fundamental premise of single-cell technology and can lead to incorrect inferences. Here, we describe Solo, a semi-supervised deep learning approach that identifies doublets with greater accuracy than existing methods. Solo embeds cells unsupervised using a variational autoencoder and then appends a feed-forward neural network layer to the encoder to form a supervised classifier. We train this classifier to distinguish simulated doublets from the observed data. Solo can be applied in combination with experimental doublet detection methods to further purify scRNA-seq data to true single cells. It is freely available from https://github.com/calico/solo. A record of this paper's transparent peer review process is included in the Supplemental Information.


Assuntos
Aprendizado Profundo/normas , RNA-Seq/métodos , Análise de Célula Única/métodos , Humanos
4.
Appl Environ Microbiol ; 77(12): 4223-5, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21531830

RESUMO

The group II azoreductase BTI1 utilizes NADPH to directly cleave azo bonds in water-soluble azo dyes, including quenchers of fluorescence. Unexpectedly, optimal reduction was dye specific, ranging from a pH of <5.5 for Janus green B, to pH 6.0 for methyl red, methyl orange, and BHQ-10, to pH >8.3 for flame orange.


Assuntos
Compostos Azo/metabolismo , NADH NADPH Oxirredutases/metabolismo , NADP/metabolismo , Concentração de Íons de Hidrogênio , Nitrorredutases , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...