Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(2): e24098, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38293538

RESUMO

The present research explores linear as well as nonlinear radiation patterns based on the MHD non-Newtonian (Maxwell) nanofluid flow having Arrhenius activation energy. This study's core focus is MHD properties in non-Newtonian fluid dynamics and boundary layer phenomena analysis. It initiates with time-dependent equations, employing boundary layer approximations. Extensive numerical computations, executed with custom Compact Visual Fortran code and the EFD method, provide profound insights into non-Newtonian fluid behavior, revealing intricate force interactions and fluid patterns. To check the stability of the solution, a convergence and stability analysis is performed. With the values of ΔY = 0.25, Δτ = 0.0005, and ΔX = 0.20; it is found that the model convergence occurs to the Lewis number, Le > 0.016 as well as the Prandtl number, Pr > 0.08. In this context, investigating non-dimensional results that depend on multiple physical factors. Explanation and visual representations of the effects of different physical characteristics and their resultant temperatures, concentrations, and velocity profiles are provided. As a result of the illustrations, the skin friction coefficient and Sherwood number, which are calculated, as well as Nusselt values, have all come up in discussion. Additionally, detailed representations of isothermal lines and streamlines are implemented, and it is pointed out that the development of these features occurs at the same time as Brownian motion. Furthermore, the temperature field for Maxwell fluid is modified due to the impression of chemical reaction as well as the Dufour number (Kr and Du). Our research demonstrates the superior performance of non-Newtonian solutions, notably in cases involving activation energy and nonlinear radiation. This paradigm shift carries significant implications. In another context, the interplay between Maxwell fluid and nonlinear radiation is notably affected by activation energy, offering promising applications in fields like medicine and industry, particularly in groundbreaking cancer treatment approaches.

2.
Bio Protoc ; 12(16)2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-36199703

RESUMO

RNA granules are conserved, non-membranous, biphasic structures predominantly composed of RNA and RNA-binding proteins. RNA granules often assemble as a result of cellular responses to a variety of stresses, including infection. Two types of RNA granules are best characterized: stress granules (SGs) and processing bodies (P-bodies). The mechanism of RNA granule assembly and disassembly is still understudied because of its complex composition and dynamic behavior. The assembly of RNA granules is driven by a process known as phase separation of granule components. Edc3 is a conserved decapping activator and an essential P-body component in Saccharomyces cerevisiae. Phase separation of P-body proteins has been poorly explored. This protocol will enable the visualization of the phase transition behavior of Edc3, since it is tagged to mCherry. It further describes using small molecules and other proteins to study P-body dynamics. In addition to the assembly of Edc3, this assay also lays the foundation to study disassembly of phase-separated assemblies in vitro , which was not explored earlier. We have devised the assay to describe the use of one such protein that acts as a disassembly factor. Overall, this protocol is simple to perform and can potentially be combined with analyzing these assemblies using other approaches. Graphical abstract.

3.
Nat Commun ; 13(1): 2077, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35440550

RESUMO

P-bodies are conserved mRNP complexes that are implicated in determining mRNA fate by affecting translation and mRNA decay. In this report, we identify RGG-motif containing translation repressor protein Sbp1 as a disassembly factor of P-bodies since disassembly of P-bodies is defective in Δsbp1. RGG-motif is necessary and sufficient to rescue the PB disassembly defect in Δsbp1. Binding studies using purified proteins revealed that Sbp1 physically interacts with Edc3 and Sbp1-Edc3 interaction competes with Edc3-Edc3 interaction. Purified Edc3 forms assemblies, promoted by the presence of RNA and NADH and the addition of purified Sbp1, but not the RGG-deletion mutant, leads to significantly decreased Edc3 assemblies. We further note that the aggregates of human EWSR1 protein, implicated in neurodegeneration, are more persistent in the absence of Sbp1 and overexpression of EWSR1 in Δsbp1 leads to a growth defect. Taken together, our observations suggest a role of Sbp1 in disassembly, which could apply to disease-relevant heterologous protein-aggregates.


Assuntos
Corpos de Processamento , Estabilidade de RNA , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
4.
FEBS J ; 286(23): 4693-4708, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31495062

RESUMO

The fate of messenger RNA in cytoplasm plays a crucial role in various cellular processes. However, the mechanisms that decide whether mRNA will be translated, degraded or stored remain unclear. Single stranded nucleic acid binding protein (Sbp1), an Arginine-Glycine-Glycine (RGG-motif) protein, is known to promote transition of mRNA into a repressed state by binding eukaryotic translation initiation factor 4G1 (eIF4G1) and to promote mRNA decapping, perhaps by modulation of Dcp1/2 activity. Sbp1 is known to be methylated on arginine residues in RGG-motif; however, the functional relevance of this modification in vivo remains unknown. Here, we report that Sbp1 is arginine-methylated in an hnRNP methyl transferase (Hmt1)-dependent manner and that methylation is enhanced upon glucose deprivation. Characterization of an arginine-methylation-defective (AMD) mutant provided evidence that methylation affects Sbp1 function in vivo. The AMD mutant is compromised in causing growth defect upon overexpression, and the mutant is defective in both localizing to and inducing granule formation. Importantly, the Sbp1-eIF4G1 interaction is compromised both for the AMD mutant and in the absence of Hmt1. Upon overexpression, wild-type Sbp1 increases localization of another RGG motif containing protein, Scd6 (suppressor of clathrin deficiency) to granules; however, this property of Sbp1 is compromised in the AMD mutant and in the absence of Hmt1, indicating that Sbp1 repression activity could involve other RGG-motif translation repressors. Additionally, the AMD mutant fails to increase localization of the decapping activator DEAD box helicase homolog to foci and fails to rescue the decapping defect of a dcp1-2Δski8 strain, highlighting the role of Sbp1 methylation in decapping. Taken together, these results suggest that arginine methylation modulates Sbp1 role in mRNA fate determination.


Assuntos
Arginina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Ligação a Selênio/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Western Blotting , Dicroísmo Circular , Grânulos Citoplasmáticos/metabolismo , Metilação , Ligação Proteica , Processamento de Proteína Pós-Traducional , RNA Mensageiro/metabolismo
5.
J Food Drug Anal ; 26(1): 154-162, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29389551

RESUMO

The aim of this study was to investigate probiotic attributes of Saccharomyces cerevisiae ARDMC1 isolated from traditional rice beer starter cake and its hypocholesterolemic effects on Wistar rats fed a high-cholesterol diet. The indigenous isolate ARDMC1 showed potential probiotic characteristics such as tolerance to simulated gastrointestinal stress conditions, autoaggregation properties, and adhesion to intestinal epithelium Caco-2 cell line. In addition, ARDMC1 isolate exhibited in vitro cholesterol assimilation properties in media supplemented with cholesterol. Furthermore, administration of probiotic isolate to rats fed a hypercholesterolemic diet resulted in significant reduction of serum total cholesterol, low-density lipoprotein cholesterol, and triglyceride at the end of 42 days. The present study envisages ARDMC1 as a promising starter culture for the preparation of functional foods with properties to combat cardiovascular diseases.


Assuntos
Anticolesterolemiantes , Suplementos Nutricionais , Probióticos , Saccharomyces cerevisiae , Animais , Anticolesterolemiantes/química , Linhagem Celular , Modelos Animais de Doenças , Humanos , Interações Hidrofóbicas e Hidrofílicas , Hipercolesterolemia/sangue , Hipercolesterolemia/metabolismo , Hipercolesterolemia/terapia , Lipídeos/sangue , Ratos , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...