Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Mol Biol ; 111(1-2): 131-151, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36271987

RESUMO

KEY MESSAGE: The C-terminal stretch in SbGPRP1 (Sorghum glycine-rich proline-rich protein) acts as an antimicrobial peptide in the host innate defense mechanism. Cationic antimicrobial proteins or peptides can either bind to the bacterial membrane or target a specific protein on the bacterial membrane thus leading to membrane perturbation. The 197 amino acid polypeptide of SbGPRP1 showed disordered structure at the N-terminal end and ordered conformation at the C-terminal end. In the present study, the expression of N-SbGPRP1, C-SbGPRP1, and ∆SbGPRP1 followed by antimicrobial assays showed potential antimicrobial property of the C-terminal peptide against gram-positive bacteria Bacillus subtilis and phytopathogen Rhodococcus fascians. The SbGPRP1 protein loses its antimicrobial property when the 23 amino acid sequence (GHGGHGVFGGGYGHGGYGHGYGG) from position 136 to 158 is deleted from the protein. Thus, it can be concluded that the 23 amino acid sequence is vital for the said antimicrobial property. NPN assay, SEM analysis, and electrolyte leakage assays showed potent antimicrobial activity for C-SbGPRP1. Overexpression of the C-SbGPRP1 mutant protein in tobacco followed by infection with Rhodococcus fascians inhibited bacterial growth as shown by SEM analysis. To determine if C-SbGPRP1 might target any protein on the bacterial membrane we isolated the bacterial membrane protein from both Bacillus subtilis and Rhodococcus fascians. Bacterial membrane protein that interacted with the column-bound C-SbGPRP1 was eluted and subjected to LC-MS/MS. LC-MS/MS data analysis showed peptide hit with membrane protein YszA from Bacillus subtilis and a membrane protein from Rhodococcus fascians. Isolated bacterial membrane protein from Bacillus subtilis or Rhodococcus fascians was able to reduce the antimicrobial activity of C-SbGPRP1. Furthermore, BiFC experiments showed interactions between C-SbGPRP1 and YszA protein from Bacillus subtilis leading to the conclusion that bacterial membrane protein was targeted in such membrane perturbation leading to antimicrobial activity.


Assuntos
Anti-Infecciosos , Sorghum , Sorghum/metabolismo , Peptídeos Antimicrobianos , Prolina , Cromatografia Líquida , Espectrometria de Massas em Tandem , Peptídeos , Proteínas de Bactérias/genética , Glicina/farmacologia , Glicina/metabolismo , Proteínas da Membrana Bacteriana Externa
2.
Physiol Mol Biol Plants ; 28(11-12): 2057-2067, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36573145

RESUMO

Plants are unavoidably exposed to a range of environmental stress factors throughout their life. In addition to the external environmental factors, the production of reactive oxygen species as a product of the cellular metabolic process often causes DNA damage and thus affects genome stability. Homologous recombination (HR) is an essential mechanism used for DNA damage repair that helps to maintain genome integrity. Here we report that the recombinase, PpRecA2, a bacterial RecA homolog from moss Physcomitrium patens can partially complement the function of Escherichia coli RecA in the bacterial system. Transcript analysis showed induced expression of PpRecA2 upon experiencing DNA damaging stressors indicating its involvement in DNA damage sensing and repair mechanism. Over-expressing the chloroplast localizing PpRecA2 confers protection to the chloroplast genome against DNA damage by enhancing the chloroplastic HR frequency in transgenic tobacco plants. Although it fails to protect against nuclear DNA damage when engineered for nuclear localization due to the non-availability of interacting partners. Our results indicate that the chloroplastic HR repair mechanism differs from the nucleus, where chloroplastic HR involves RecA as a key player that resembles the bacterial system. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-022-01264-7.

3.
Plant Physiol Biochem ; 180: 81-90, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35398654

RESUMO

Nijmegen breakage syndrome 1 (NBS1) protein is a core member of the MRE11-RAD50-NBS1 (MRN) complex that plays a crucial role in DNA damage sensing and repair in plants. Here we report that NBS1 from moss Physcomitrium patens reduces oxidative damage by lowering the cellular ROS in addition to its known role in oxidative DNA damage recovery. Real-time transcript analysis showed up-regulation of the PpNBS1 transcript under different stress conditions. Bacterial cells showed better cell survivability upon over-expressing PpNBS1 protein as compared to untransformed cells. Likewise, overexpression of PpNBS1 in tobacco plants provides improved protection against oxidative damage and exhibited a lesser amount of ROS upon exposure to oxidative stress. Moreover, PpNBS1 contributes to the antioxidant defense mechanism by positively regulating the expression of the antioxidant genes under stress conditions in transgenic tobacco plants. PpNBS1 expressing transgenic tobacco plants resulted in lesser membrane damage, lower lipid peroxidation level, and higher chlorophyll content under stress conditions. Taken together, we conclude in addition to its known role as DNA damage sensor, PpNBS1 also plays a definite role in oxidative stress mitigation by minimizing ROS accumulation in the cell.

4.
Plant Mol Biol ; 101(1-2): 95-112, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31236845

RESUMO

KEY MESSAGE: Sorghum glycine rich proline rich protein (SbGPRP1) exhibit antimicrobial properties and play a crucial role during biotic stress condition. Several proteins in plants build up the innate immune response system in plants which get triggered during the occurrence of biotic stress. Here we report the functional characterization of a glycine-rich proline-rich protein (SbGPRP1) from Sorghum which was previously demonstrated to be involved in abiotic stresses. Expression studies carried out with SbGPRP1 showed induced expression upon application of phytohormones like salicylic acid which might be the key in fine-tuning the expression level. Upon challenging the Sorghum plants with a compatible pathogen the SbGprp1 transcript was found to be upregulated. SbGPRP1 encodes a 197 amino acid polypeptide which was bacterially-expressed and purified for in vitro assays. Gram-positive bacteria like Bacillus and phytopathogen Rhodococcus fascians showed inhibited growth in the presence of the protein. The NPN assay, electrolytic leakage and SEM analysis showed membrane damage in bacterial cells. Ectopic expression of SbGPRP1 in tobacco plants led to enhanced tolerance towards infection caused by R. fascians. Though the N-terminal part of the protein showed disorderness the C-terminal end was quite capable of forming several α-helices which was correlated with CD spectroscopic analysis. Here, we have tried to determine the structural model for the protein and predicted the association of antimicrobial activity with the C-terminal region of the protein.


Assuntos
Anti-Infecciosos/metabolismo , Doenças das Plantas/imunologia , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/metabolismo , Ácido Salicílico/farmacologia , Sorghum/genética , Bacillus/efeitos dos fármacos , Expressão Ectópica do Gene , Glicina/metabolismo , Filogenia , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Prolina/metabolismo , Rhodococcus/efeitos dos fármacos , Sorghum/imunologia , Sorghum/metabolismo , Sorghum/microbiologia , Estresse Fisiológico , Nicotiana/genética , Nicotiana/imunologia , Nicotiana/metabolismo , Nicotiana/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...