Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(22): e202217613, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-36952310

RESUMO

Transient states maintained by energy dissipation are an essential feature of dynamic systems where structures and functions are regulated by fluxes of energy and matter through chemical reaction networks. Perfected in biology, chemically fueled dissipative networks incorporating nanoscale components allow the unique properties of nanomaterials to be bestowed with spatiotemporal adaptability and chemical responsiveness. We report the transient dispersion of gold nanoparticles in water, powered by dissipation of a chemical fuel. A dispersed state that is generated under non-equilibrium conditions permits fully reversible solid-liquid or liquid-liquid phase transfer. The molecular basis of the out-of-equilibrium process is reversible covalent modification of nanoparticle-bound ligands by a simple inorganic activator. Activator consumption by a coupled dissipative reaction network leads to autonomous cycling between phases. The out-of-equilibrium lifetime is tunable by adjusting the pH value, and reversible phase cycling is reproducible over several cycles.

2.
Angew Chem Int Ed Engl ; 61(28): e202203924, 2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35506473

RESUMO

Precise control over interparticle interactions is essential to retain the functions of individual components in a self-assembled superstructure. Here, we report the design of a multifunctional bioplasmonic network via an electrostatically directed self-assembly process involving adenosine 5'-triphosphate (ATP). The present study unveils the ability of ATP to undergo a long-range self-assembly in the presence of cations and gold nanoparticles (AuNP). Modelling and NMR studies gave a qualitative insight into the major interactions driving the bioplasmonic network formation. ATP-Ca2+ coordination helps in regulating the electrostatic interaction, which is crucial in transforming an uncontrolled precipitation into a kinetically controlled aggregation process. Remarkably, ATP and AuNP retained their inherent properties in the multifunctional bioplasmonic network. The generality of electrostatically directed self-assembly process was extended to different nucleotide-nanoparticle systems.


Assuntos
Ouro , Nanopartículas Metálicas , Trifosfato de Adenosina/química , Cátions , Ouro/química , Nanopartículas Metálicas/química , Nucleotídeos
3.
Langmuir ; 37(5): 1843-1849, 2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33502873

RESUMO

We demonstrate the power of fine-tuned interparticle interactions, emanating from appropriately functionalized surfaces, in creating self-assembled structures that show a transient switching between completely precipitated and redispersed stages of nanoparticles (NPs). The pH-dependent temporal changes in the strength of electrostatic interactions are explored to unveil a transient self-assembly response in plasmonic NPs. The assembly process was triggered by the electrostatic attraction between positively charged gold NPs (AuNPs) and an aggregating agent, ethylenediaminetetraacetic acid (EDTA). The autonomous changes in the pH and ionic strength of the solution, under the influence of atmospheric CO2, weaken the aggregating ability of EDTA and initiate the complete disassembly of [+] AuNP-EDTA precipitates. The use of a nondestructive mode of autonomous disassembly helped in achieving some of the desirable feats in the field of transient self-assembly such as easy removal of waste, formation of a transiently stable precipitate state, and negligible dampness in redispersion. The chemical strategy adopted in the present work, to introduce transientness, can act as a generic tool in creating the next generation of complex matter.

4.
J Phys Chem Lett ; 11(13): 5354-5360, 2020 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-32539403

RESUMO

Demonstration of fundamental photophysical properties in environmentally friendly quantum dots (QDs) is essential to realize their practical use in various light harvesting applications. We accomplish here an efficient light induced resonance energy transfer in all-QD based donor-acceptor system in water, deprived of any commonly used organic dye component. Our nanohybrid system comprises surface engineered indium phosphide/zinc sulfide (InP/ZnS) QD as the donor, and copper indium sulfide/zinc sulfide (CIS/ZnS) QD as the acceptor. The electrostatic attraction between oppositely charged QDs is vital in achieving a strong ground state complexation in the [-] InP/ZnS:::[+] CIS/ZnS QD nanohybrid. A nonlinear Stern-Volmer plot confirms the involvement of both static and dynamic components in the PL quenching of InP/ZnS QD by CIS/ZnS QD. Moreover, a temporal evolution of resonance energy transfer is realized in the solid state as well, which can improve the potential of such "all-green QD" based nanohybrid systems for device level studies.

5.
J Phys Chem Lett ; 11(10): 4099-4106, 2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-32357301

RESUMO

Ability to create high-contrast multicolor luminescent patterns is essential to realize the full potential of quantum dots (QDs) in display technologies. The idea of using a nonemissive state is adopted in the present work to enhance the color-contrast of QD-based photopatterns. This is achieved at a multicolor level by the photoregulation of electron and energy transfer processes in a single QD nanohybrid film, composed of one QD donor and two dye acceptors. The dominance of photoinduced electron transfer over the energy transfer process generates a nonluminescent QD nanohybrid film, which provides the black background for multicolor patterning. The superior photostability of QDs over dyes is used for the photoregulation of electron and energy transfer processes. Selective photodegradation of electron acceptor dye triggered the onset of the energy transfer process, thereby imparting a luminescent color to the QD nanohybrid film. Further, a controlled photoregulation of energy transfer process paved the way for multicolor patterning.

6.
Sci Rep ; 8(1): 2913, 2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29440727

RESUMO

Increased emissions of greenhouse gases have altered the global ambient temperature and adversely affected global climatic conditions. The municipal solid waste (MSW) generated by households is considered the third largest anthropogenic source of methane (CH4) emissions, constituting 11% of all global CH4 emissions. The current study derived total MSW CH4 emission estimates using the IPCC default method (DM), modified triangular method (MTM) and first order decay method (FOD). The estimated CH4 emission was higher for the DM than the other methods, and was comparable to estimates from other studies. This study observed that the net annual emission of CH4 from landfills in India increased from 404 Gg in 1999-2000 to 990 Gg and 1084 Gg in 2011 and 2015, respectively. We also found that CH4 emissions were highly correlated (R2 = 0.8) with the gross state domestic product (GSDP) of states and the gross domestic product (GDP) of the country, which is an indicator of human well-being. The MSW management policy of India needs to be reviewed in a current policy context, as the management and efficient utilization of MSW technologies might help increase the use of CH4 as an energy source and thereby improve its sustainable and cost-effective management.

7.
Chem Sci ; 8(5): 3879-3884, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28626557

RESUMO

Indium Phosphide Quantum Dots (InP QDs) have emerged as an alternative to toxic metal ion based QDs in nanobiotechnology. The ability to generate cationic surface charge, without compromising stability and biocompatibility, is essential in realizing the full potential of InP QDs in biological applications. We have addressed this challenge by developing a place exchange protocol for the preparation of cationic InP/ZnS QDs. The quaternary ammonium group provides the much required permanent positive charge and stability to InP/ZnS QDs in biofluids. The two important properties of QDs, namely bioimaging and light induced resonance energy transfer, are successfully demonstrated in cationic InP/ZnS QDs. The low cytotoxicity and stable photoluminescence of cationic InP/ZnS QDs inside cells make them ideal candidates as optical probes for cellular imaging. An efficient resonance energy transfer (E ∼ 60%) is observed, under physiological conditions, between the cationic InP/ZnS QD donor and anionic dye acceptor. A large bimolecular quenching constant along with a linear Stern-Volmer plot confirms the formation of a strong ground state complex between the cationic InP/ZnS QDs and the anionic dye. Control experiments prove the role of electrostatic attraction in driving the light induced interactions, which can rightfully form the basis for future nano-bio studies between cationic InP/ZnS QDs and anionic biomolecules.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...