Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Breast Cancer Res Treat ; 150(3): 487-99, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25788226

RESUMO

Triple-negative breast cancer (TNBC), the most aggressive breast cancer subtype, occurs in younger women and is associated with poor prognosis. Gain-of-function mutations in TP53 are a frequent occurrence in TNBC and have been demonstrated to repress apoptosis and up-regulate cell cycle progression. Even though TNBC responds to initial chemotherapy, resistance to chemotherapy develops and is a major clinical problem. Tumor recurrence eventually occurs and most patients die from their disease. An urgent need exists to identify molecular-targeted therapies that can enhance chemotherapy response. In the present study, we report that targeting PELP1, an oncogenic co-regulator molecule, could enhance the chemotherapeutic response of TNBC through the inhibition of cell cycle progression and activation of apoptosis. We demonstrate that PELP1 interacts with MTp53, regulates its recruitment, and alters epigenetic marks at the target gene promoters. PELP1 knockdown reduced MTp53 target gene expression, resulting in decreased cell survival and increased apoptosis upon genotoxic stress. Mechanistic studies revealed that PELP1 depletion contributes to increased stability of E2F1, a transcription factor that regulates both cell cycle and apoptosis in a context-dependent manner. Further, PELP1 regulates E2F1 stability in a KDM1A-dependent manner, and PELP1 phosphorylation at the S1033 residue plays an important role in mediating its oncogenic functions in TNBC cells. Accordingly, depletion of PELP1 increased the expression of E2F1 target genes and reduced TNBC cell survival in response to genotoxic agents. PELP1 phosphorylation was significantly greater in the TNBC tumors than in the other subtypes of breast cancer and in the normal tissues. These findings suggest that PELP1 is an important molecular target in TNBC, and that PELP1-targeted therapies may enhance response to chemotherapies.


Assuntos
Proteínas Correpressoras/metabolismo , Fator de Transcrição E2F1/metabolismo , Mutação , Fatores de Transcrição/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Proteína Supressora de Tumor p53/genética , Antineoplásicos/farmacologia , Apoptose , Linhagem Celular Tumoral , Proteínas Correpressoras/antagonistas & inibidores , Proteínas Correpressoras/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Técnicas de Silenciamento de Genes , Humanos , Fosforilação , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Proteína Supressora de Tumor p53/metabolismo
2.
Mol Cancer Ther ; 13(6): 1578-88, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24688046

RESUMO

Proline, Glutamic acid-, and Leucine-rich Protein 1 (PELP1) is a proto-oncogene that modulates estrogen receptor (ER) signaling. PELP1 expression is upregulated in breast cancer, contributes to therapy resistance, and is a prognostic marker of poor survival. In a subset of breast tumors, PELP1 is predominantly localized in the cytoplasm and PELP1 participates in extranuclear signaling by facilitating ER interactions with Src and phosphoinositide 3-kinase (PI3K). However, the mechanism by which PELP1 extranuclear actions contributes to cancer progression and therapy resistance remains unclear. In this study, we discovered that PELP1 cross-talked with the serine/threonine protein kinase mTOR and modulated mTOR signaling. PELP1 knockdown significantly reduced the activation of mTOR downstream signaling components. Conversely, PELP1 overexpression excessively activated mTOR signaling components. We detected the presence of the mTOR signaling complex proteins in PELP1 immunoprecipitates. mTOR-targeting drugs (rapamycin and AZD8055) significantly reduced proliferation of PELP1-overexpressed breast cancer cells in both in vitro and in vivo xenograft tumor models. MCF7 cells that uniquely retain PELP1 in the cytoplasm showed resistance to hormonal therapy and mTOR inhibitors sensitized PELP1cyto cells to hormonal therapy in xenograft assays. Notably, immunohistochemical studies using xenograft tumors derived from PELP1 overexpression model cells showed increased mTOR signaling and inhibition of mTOR rendered PELP1-driven tumors to be highly sensitive to therapeutic inhibition. Collectively, our data identified the PELP1-mTOR axis as a novel component of PELP1 oncogenic functions and suggest that mTOR inhibitor(s) will be effective chemotherapeutic agents for downregulating PELP1 oncogenic functions.


Assuntos
Neoplasias da Mama/genética , Proliferação de Células/genética , Proteínas Correpressoras/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Fatores de Transcrição/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Proteínas Correpressoras/genética , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Células MCF-7 , Fosfatidilinositol 3-Quinases/metabolismo , Proto-Oncogene Mas , Receptores de Estrogênio/metabolismo , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/genética , Fatores de Transcrição/genética
3.
Clin Cancer Res ; 17(8): 2250-9, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21421858

RESUMO

PURPOSE: Ovarian cancer remains a major threat to women's health, partly due to difficulty in early diagnosis and development of metastases. A critical need exists to identify novel targets that curb the progression and metastasis of ovarian cancer. In this study, we examined whether the nuclear receptor coregulator PELP1 (proline-, glutamic acid-, leucine-rich protein-1) contributes to progression and metastatic potential of ovarian cancer cells and determined whether blocking of the PELP1 signaling axis had a therapeutic effect. EXPERIMENTAL DESIGN: Ovarian cancer cells stably expressing PELP1-shRNA (short hairpin RNA) were established. Fluorescent microscopy, Boyden chamber, invasion assays, wound healing, and zymography assays were performed to examine the role of PELP1 in metastasis. Expression analysis of the model cells was conducted using tumor metastasis microarray to identify PELP1 Target genes. Therapeutic potential of PELP1-siRNA in vivo was determined using a nanoliposomal formulation of PELP1-siRNA-DOPC (1,2-dioleoyl-sn-glycero-3-phosphatidylcholine) administered systemically in a xenograft model. RESULTS: PELP1 knockdown caused cytoskeletal defects and significantly affected the migratory potential of ovarian cancer cells. Microarray analysis revealed that PELP1 affected the expression of selective genes involved in metastasis including Myc, MTA1, MMP2, and MMP9. Zymography analysis confirmed that PELP1 knockdown caused a decrease in the activation of matrix metalloproteases (MMP) 2 and MMP9. Compared with control siRNA-DOPC-treated mice, animals injected with PELP1-siRNA-DOPC had 54% fewer metastatic tumor nodules, exhibited a 51% reduction in tumor growth and an 84% reduction in ascites volume. CONCLUSION: The results suggest that PELP1 signaling axis is a potential druggable target and liposomal PELP1-siRNA-DOPC could be used as a novel drug to prevent or treat ovarian metastasis.


Assuntos
Proteínas Correpressoras/genética , Neoplasias Ovarianas/genética , Interferência de RNA , RNA Interferente Pequeno/genética , Fatores de Transcrição/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Western Blotting , Linhagem Celular Tumoral , Proliferação de Células , Proteínas Correpressoras/metabolismo , Citoesqueleto/metabolismo , Feminino , Perfilação da Expressão Gênica , Humanos , Lipossomos/administração & dosagem , Lipossomos/química , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Nus , Metástase Neoplásica , Análise de Sequência com Séries de Oligonucleotídeos , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/terapia , Fosfatidilcolinas/química , RNA Interferente Pequeno/química , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição/metabolismo , Carga Tumoral
4.
Arch Biochem Biophys ; 436(1): 121-7, 2005 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-15752716

RESUMO

Membrane destabilization in erythrocytes plays an important role in the premature hemolysis and development of anemia during visceral leishmaniasis (VL). Marked degradation of the anion channel protein band 3 is likely to allow modulation of anion flux across the red cell membrane in infected animals. The present study describes the effect of structural modification of band 3 on phosphate transport in VL using (31)P NMR. The result showed progressive decrease in the rate and extent of phosphate transport during the post-infection period. Interdependence between the intracellular ionic levels seems to be a determining factor in the regulation of anion transport across the erythrocyte membrane in control and infected conditions. Infection-induced alteration in band 3 made the active sites of transport more susceptible to binding with amino reactive agents. Inhibition of transport by oxidation of band 3 and subsequent reversal by reduction using dithiothreitol suggests the contribution of sulfhydryl group in the regulation of anion exchange across the membrane. Quantitation of sulfhydryl groups in the anion channel protein showed the inhibition to be closely related to the decrease of sulfhydryl groups in the infected hamsters. Downregulation of phosphate transport during leishmanial infection may be ascribed to the sulfhydryl modification of band 3 resulting in the impaired functioning of this protein under the diseased condition.


Assuntos
Proteína 1 de Troca de Ânion do Eritrócito/metabolismo , Membrana Eritrocítica/metabolismo , Leishmania donovani/metabolismo , Leishmaniose Visceral/metabolismo , Fosfatos/metabolismo , Compostos de Sulfidrila/química , Animais , Sítios de Ligação , Transporte Biológico/efeitos dos fármacos , Eletroforese em Gel de Poliacrilamida , Membrana Eritrocítica/efeitos dos fármacos , Leishmaniose Visceral/patologia , Espectroscopia de Ressonância Magnética , Oxirredução , Fosfatos/antagonistas & inibidores , Compostos de Sulfidrila/farmacologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...